There is 1 message totaling 1959 lines in this issue. Topics of the day: 1. Smithsonian / USGS Weekly Volcanic Activity Report 12-18 September 2018 ============================================================== Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI). ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/ To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx. To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments. ============================================================== ---------------------------------------------------------------------- Date: Wed, 19 Sep 2018 12:26:32 -0700 From: Sean Peters <speter24@xxxxxxx> Subject: Smithsonian / USGS Weekly Volcanic Activity Report 12-18 September 2018 ****************************** From: "Kuhn, Sally" <KUHNS@xxxxxx> ****************************** Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx) URL: https://volcano.si.edu/reports_weekly.cfm New Activity/Unrest: Ioto, Japan | Piton de la Fournaise, Reunion Island (France) | Sarychev Peak, Matua Island (Russia) | Semisopochnoi, United States | Veniaminof, United States Ongoing Activity: Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Krakatau, Indonesia | Merapi, Central Java (Indonesia) | Nevados de Chillan, Chile | Popocatepetl, Mexico | Sabancaya, Peru | Sangay, Ecuador | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Turrialba, Costa Rica The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest Ioto | Japan | 24.751°N, 141.289°E | Summit elev. 169 m During an overflight of Ioto (Iwo-jima) on 12 September the Japan Maritime Self Defense Force observed seawater jetting 5-10 m above the sea surface on the S coast, suggestive of a submarine eruption. Geologic Summary. Ioto (changed from Iwo-jima in 2007) in the central Volcano Islands portion of the Izu-Marianas arc lies within a 9-km-wide submarine caldera. Ioto, Iwo-jima, and Iojima are among many transliterations of the name. The volcano is also known as Ogasawara-Iojima to distinguish it from several other "Sulfur Island" volcanoes in Japan. The triangular, low-elevation, 8-km-long island narrows toward its SW tip and has produced trachyandesitic and trachytic rocks that are more alkalic than those of other Izu-Marianas arc volcanoes. The island has undergone dramatic uplift for at least the past 700 years accompanying resurgent doming of the caldera. A shoreline landed upon by Captain Cook's surveying crew in 1779 is now 40 m above sea level. The Motoyama plateau on the NE half of the island consists of submarine tuffs overlain by coral deposits and forms the island's high point. Many fumaroles are oriented along a NE-SW zone cutting through Motoyama. Numerous historical phreatic eruptions, many from vents on the west and NW sides of the island, have accompanied the remarkable uplift. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Piton de la Fournaise | Reunion Island (France) | 21.244°S, 55.708°E | Summit elev. 2632 m OVPF reported that after several hours of increased seismicity at Piton de la Fournaise a seismic crisis began at 0145 on 15 September, accompanied by rapid deformation. Tremor began at 0425, contemporaneous with the opening of fissures on the S flank near Rivals Crater. Around 1000 an estimate of the lava flow rate, based on satellite data, was 30 cubic meters per second. During an overflight about an hour later observers noted five fissures. The central fissure was the most active, producing lava fountains 30 m high; two lava flows that merged downstream had already flowed more than 2 km towards the wall of the Enclos Fouqué. By the afternoon of 16 September the estimated flow rate was between 2.5 and 7 cubic meters per second. Only three vents were active and a cone had started to form. Lava flows continued to advance during 16-18 September. Geologic Summary. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano. Source: Observatoire Volcanologique du Piton de la Fournaise (OVPF) http://www.ipgp.fr/ Sarychev Peak | Matua Island (Russia) | 48.092°N, 153.2°E | Summit elev. 1496 m SVERT and KVERT reported increased activity and ash emissions at Sarychev Peak in mid-September. A thermal anomaly had been periodically visible since 7 May 2018, though more recently anomalies were detected during 8 and 11-12 September. Explosions sometimes occurred during 11 and 13-15 September, and ash emissions rose 3-4 km (10,000-13,100 ft) a.s.l. On 14 September ash plumes drifted as far as 120 km. On 14 September KVERT stated that the Aviation Color Code was raised to Orange, though on 17 September SVERT noted that the Aviation Color Code was at Yellow. KVERT reported that explosions at 0910 on 17 September generated ash plumes that rose as high as 4.5 km (14,800 ft) a.s.l. and drifted 21 km NE. Geologic Summary. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea. Sources: Sakhalin Volcanic Eruption Response Team (SVERT) http://www.imgg.ru/; Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/ kvert/index_eng.php Semisopochnoi | United States | 51.93°N, 179.58°E | Summit elev. 1221 m On 16 September AVO raised the Aviation Color Code (ACC) for Semisopochnoi to Yellow and Volcano Alert Level (VAL) to Advisory after increased seismicity was detected at 0831. Retrospective analysis of satellite data acquired on 10 September revealed small ash deposits on the N flank of Mount Cerberus, possibly associated with two bursts of tremor recorded on 8 September. This new information coupled with intensifying seismicity and a strong tremor signal recorded at 1249 on 17 September prompted AVO to raise the ACC to Orange and the VAL to Watch. Seismicity remained elevated on 18 September with nearly constant tremor being recorded by local sensors. Geologic Summary. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time. Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/ Veniaminof | United States | 56.17°N, 159.38°W | Summit elev. 2507 m AVO reported that the eruption at Veniaminof continued during 12-18 September. A lava flow had traveled 800 m down the S flank of the summit cone by 14 September, remaining confined to the ice-filled summit caldera. A webcam in Perryville (35 km S) recorded nighttime incandescence, and sporadic gas emissions in the day during clear conditions. Elevated surface temperatures were identified in satellite images, and seismicity remained elevated. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. Geologic Summary. Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface. Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/ Ongoing Activity Aira | Kyushu (Japan) | 31.593°N, 130.657°E | Summit elev. 1117 m JMA reported that there were 13 events and also 13 explosions at Minamidake crater (at Aira Caldera’s Sakurajima volcano) during 10-18 September, with ash plumes rising as high as 1.8 km above the crater rim and material ejected as far as 1.1 km. Crater incandescence was visible at night. The Alert Level remained at 3 (on a 5-level scale). Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Dukono | Halmahera (Indonesia) | 1.693°N, 127.894°E | Summit elev. 1229 m Based on satellite data, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 12-18 September ash plumes from Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted in multiple directions. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/ aviation/volcanic-ash/darwin-va-advisory.shtml Ebeko | Paramushir Island (Russia) | 50.686°N, 156.014°E | Summit elev. 1103 m KVERT reported that a thermal anomaly over Ebeko was identified in satellite images during 7, 9, and 12-13 September. Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E, observed explosions that sent ash plumes to 3.4 km (11,200 ft) a.s.l. and occasional incandescence during 10-13 September; ash plumes visible in satellite data drifted 113 km SE and NE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Karymsky | Eastern Kamchatka (Russia) | 54.049°N, 159.443°E | Summit elev. 1513 m KVERT reported that a thermal anomaly over Karymsky was identified in satellite images on 7 September. Dense and continuous ash emissions from the crater were visible on 10 September. Explosions during 10-11 September generated ash plumes identified in satellite images rising 5-6 km (16,400-19,700 ft) a.s.l. and drifting about 860 km NE. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Kilauea | Hawaiian Islands (USA) | 19.421°N, 155.287°W | Summit elev. 1222 m HVO reported minor incandescence from a collapse pit in the central part of Kilauea’s Fissure 8 cone during 12-15 September, and that small amounts of fuming rose from a small spatter cone located towards the back of the Fissure 8 cone during 12-18 September. Seismicity and ground deformation remain low at the summit, and aftershocks from the M 6.9 earthquake in early May were located along faults on the south flank. The combined rate of sulfur dioxide emission from the summit and the LERZ (less than 1,000 tonnes/day) were lower than any time since late 2007. Small collapses at Pu'u 'O'o Crater during 12-14 September generated visible dust plumes. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. Geologic Summary. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) https://volcanoes.usgs.gov/observatories/hvo/ Klyuchevskoy | Central Kamchatka (Russia) | 56.056°N, 160.642°E | Summit elev. 4754 m On 12 September KVERT reported that activity at Klyuchevskoy had continued to decrease, with the last ash plume visible on 14 July. A weak thermal anomaly was occasionally visible though the temperature of the anomaly had steadily decreased. Gas-and-steam emissions continued. The Aviation Color Code was lowered to Green (the lowest level on a four-color scale). Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Krakatau | Indonesia | 6.102°S, 105.423°E | Summit elev. 813 m Based on satellite data, the Darwin VAAC reported that during 11-13 and 17-18 September ash plumes from Anak Krakatau rose to altitudes of 1.5-1.8 km (5,000-6,000 ft) a.s.l. and drifted NW, W, and SW. The Alert Level remained at 2 (on a scale of 1-4); residents and visitors were warned not to approach the volcano within 2 km of the crater. Geologic Summary. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927. Sources: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/ aviation/volcanic-ash/darwin-va-advisory.shtml; Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Merapi | Central Java (Indonesia) | 7.54°S, 110.446°E | Summit elev. 2910 m PVMBG reported that during 10-16 September the new lava dome in Merapi’s summit crater continued to slowly grow. By 16 September the volume of the lava dome was an estimated 112,000 cubic meters, and the growth rate was 1,600 cubic meters per day. White emissions of variable density rose 20 m above the summit. The Alert Level remained at 2 (on a scale of 1-4), and resident were warned to remain outside of the 3-km exclusion zone. Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Nevados de Chillan | Chile | 36.868°S, 71.378°W | Summit elev. 3180 m Servicio Nacional de Geología and Minería (SERNAGEOMIN) Observatorio Volcanológico de Los Andes del Sur (OVDAS) and ONEMI reported the continuing, slow growth of the lava dome in Nevados de Chillán’s Nicanor Crater during 11-17 September. Gas emissions persisted, and sometimes contained ash. Periodic explosions sometimes ejected material that was deposited around the crater. Notably, at 0057 on 12 September, an explosion associated with a partial dome-collapse event ejected incandescent material 700 m above the crater rim and onto the flanks. An explosion at 2224 on 13 September generated ash plumes that rose 2.5 km above the crater rim. The event also ejected incandescent material to the SE, and generated a pyroclastic flow that traveled as most 400 m E. The Alert Level remained at Orange, the second highest level on a four-color scale, and residents were reminded not to approach the crater within 3 km. ONEMI maintained an Alert Level Yellow (the middle level on a three-color scale) for the communities of Pinto, Coihueco, and San Fabián. Geologic Summary. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height. Sources: Oficina Nacional de Emergencia-Ministerio del Interior (ONEMI) http://www.onemi.cl/; Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/; Volcanes de Chile https://www.volcanesdechile.net/ Popocatepetl | Mexico | 19.023°N, 98.622°W | Summit elev. 5393 m CENAPRED reported that each day during 12-17 September there were 64-189 steam-and-gas emissions from Popocatépetl, some of which contained minor amounts of ash. Nighttime crater incandescence was sometimes visible. Explosions were detected almost every day: eight on 12 September; one on 14 September; five on 15 September; three on 16 September. A series of emissions and explosions accompanied by tremor began at 0425 on 17 September and lasted for 365 minutes; incandescent tephra was ejected. The Alert Level remained at Yellow, Phase Two. Geologic Summary. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time. Source: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.unam.mx/es/ Sabancaya | Peru | 15.787°S, 71.857°W | Summit elev. 5960 m Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosions at Sabancaya averaged 13 per day during 10-16 September. Hybrid earthquakes were infrequent and of low magnitude. Gas-and-ash plumes rose as high as 2.5 km above the crater rim and drifted 30 km N, NE, and SE. The MIROVA system detected seven thermal anomalies, and on 12 September the sulfur dioxide gas flux was high at 2,060 tons/day. The report noted that the public should not approach the crater within a 12-km radius. Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750. Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.ingemmet.gob.pe/; Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/ Sangay | Ecuador | 2.005°S, 78.341°W | Summit elev. 5286 m Based on satellite images and wind model data, the Washington VAAC reported that on 11, 13, 15, and 17 September ash emissions from Sangay rose to 5.8-6.4 km (19,000-21,000 ft) a.s.l. and drifted SW and W. A thermal anomaly was visible each day, and also on 16 September. Geologic Summary. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex. Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html Sheveluch | Central Kamchatka (Russia) | 56.653°N, 161.36°E | Summit elev. 3283 m KVERT reported that a thermal anomaly over Sheveluch was identified in satellite data during 7-8 and 12-13 September. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Suwanosejima | Ryukyu Islands (Japan) | 29.638°N, 129.714°E | Summit elev. 796 m JMA reported that during 12-13 September eruptive events at Suwanosejima’s Ontake Crater generated plumes that rose 1.1 km above the crater rim. Tremor increased, and nighttime crater incandescence was also visible. The Alert Level remained at 2 (on a 5-level scale). Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Turrialba | Costa Rica | 10.025°N, 83.767°W | Summit elev. 3340 m OVSICORI-UNA reported that passive gas-and-ash emissions from Turrialba were continuous in September through the 13th. Events during 17-18 September produced plumes that rose 300 m above the crater and drifted SW and NW. Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters. Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/ ============================================================== Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI). ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/ To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx. To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments. ============================================================== ------------------------------ End of Volcano Digest - 14 Sep 2018 to 19 Sep 2018 (#2018-98) *************************************************************