Smithsonian/USGS Weekly Volcanic Activity Report 5-11 March 2014
************************************************************************************************
Smithsonian/USGS Weekly Volcanic Activity Report
5-11 March 2014
Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx
URL: http://www.volcano.si.edu/reports/usgs/
New Activity/Unrest: | Pacaya, Guatemala | Popocatépetl, México | Slamet, Central Java (Indonesia) | Ubinas, Perú
Ongoing Activity: | Aira, Kyushu | Chirinkotan, Kuril Islands | Chirpoi, Kuril Islands (Russia) | Colima, México border | Dukono, Halmahera | Etna, Sicily (Italy) | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaii (USA) | Shiveluch, Central Kamchatka (Russia) | Sinabung, Sumatra (Indonesia) | Tungurahua, Ecuador
The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.
Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.
New Activity/Unrest
PACAYA Guatemala 14.381°N, 90.601°W; summit elev. 2552 m
INSIVUMEH reported that during 6-7 and 9-10 March small explosions from Pacaya generated diffuse ash plumes. Minor avalanches descended the W flank. During 8-9 March lava flows were active, and white and gray steam plumes rose 200 m above the crater and drifted SE.
Geologic Summary. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. Pacaya is a complex volcano constructed on the southern rim of the 14 x 16 km Pleistocene Amatitlan caldera. A cluster of dacitic lava domes occupies the caldera floor. The Pacaya massif includes the Cerro Grande lava dome and a younger volcano to the SW. Collapse of Pacaya volcano about 1,100 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (MacKenney cone) grew. During the past several decades, activity at Pacaya has consisted of frequent Strombolian eruptions with intermittent lava flow extrusion on the flanks of MacKenney cone, punctuated by occasional larger explosive eruptions.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/
POPOCATEPETL México 19.023°N, 98.622°W; summit elev. 5426 m
CENEPRED reported that incandescence from Popocatépetl’s crater was visible at night during 5-11 March, and steam-and gas emissions visible during the day drifted E, NE, and NW. An explosion at 0334 on 6 March ejected material 600 m onto the flanks. The Alert Level remained at Yellow, Phase Two.
Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages.
Source: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.unam.mx/es/
SLAMET Central Java (Indonesia) 7.242°S, 109.208°E; summit elev. 3428 m
PVMBG reported that seismicity at Slamet increased during 1-10 March, particularly during 8-10 March. Observers at a post in Slamet Gambuhan village, about 10 km away, noted that diffuse to dense white plumes rose as high as 600 m above the crater during 1-7 March, and as high as 1 km during 8-10 March. The Alert Level was raised to 2 (on a scale of 1-4) on 10 March; visitors and tourists were advised not to approach the crater within a radius of 2 km.
Geologic Summary. Slamet, Java's second highest volcano at 3428 m and one of its most active, has a cluster of about three dozen cinder cones on its lower SE-NE flanks and a single cinder cone on the western flank. Slamet is composed of two overlapping edifices, an older basaltic-andesite to andesitic volcano on the west and a younger basaltic to basaltic-andesite one on the east. Gunung Malang II cinder cone on the upper eastern flank on the younger edifice fed a lava flow that extends 6 km to the east. Four craters occur at the summit of Gunung Slamet, with activity migrating to the SW over time. Historical eruptions, recorded since the 18th century, have originated from a 150-m-deep, 450-m-wide, steep-walled crater at the western part of the summit and have consisted of explosive eruptions generally lasting a few days to a few weeks.
Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) also known CVGHM http://www.vsi.esdm.go.id/
UBINAS Perú 16.355°S, 70.903°W; summit elev. 5672 m
IGP reported that during 26 February-4 March activity at Ubinas was characterized as low to moderate; seismicity fluctuated but remained low. Volcanologists visited the crater during 1-2 March and observed a new elongated body of incandescent lava that was 30-40 m long and emitted bluish gas. The Buenos Aires VAAC reported that although a pilot reported an ash plume drifting NE at an altitude of 8.8 km (29,000 ft) a.s.l. on 7 March, there was no indication of ash in satellite images. On 10 March a narrow and diffuse plume possibly containing ash was detected in satellite images drifting SW. Clear images the next day showed no ash present.
Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread Plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions.
Sources: Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/,
Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.smn.gov.ar/vaac/buenosaires/productos.php
Ongoing Activity
AIRA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m
JMA reported that during 3-7 March six explosions from Showa Crater at Aira Caldera’s Sakurajima volcano ejected tephra as far as 1,300 m. Incandescence from the crater was detected at night. The Alert Level remained at 3 (on a scale of 1-5). The Tokyo VAAC reported explosions during 5-11 March. Plumes rose to altitudes of 1.2-3 km (4,000-10,000 ft) a.s.l. and drifted NE, E, SE, and S. Pilots observed ash drifting SE at an altitude of 2.1 km (7,000 ft) a.s.l. on 6 March, SE at an altitude of 3.7 km (12,000 ft) a.s.l. on 9 March, and NE at an altitude of 2.7 km (9,000 ft) a.s.l. on 11 March.
Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.
Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/index.html,
Tokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html
CHIRINKOTAN Kuril Islands 48.980°N, 153.480°E; summit elev. 724 m
SVERT reported that a thermal anomaly over Chirinkotan was observed in satellite images on 4 March. Cloud cover obscured views during 5-10 March. The Aviation Color Code remained at Yellow.
Geologic Summary. The small, mostly unvegetated 3-km-wide island of Chirinkotan occupies the far end of an E-W-trending volcanic chain that extends nearly 50 km west of the central part of the main Kuril Islands arc. Chirinkotan is the emergent summit of a volcano that rises 3000 m from the floor of the Kuril Basin. A small 1-km-wide caldera about 300-400 m deep is open to the SE. Lava flows from a cone within the breached crater reached the north shore of the island. Historical eruptions have been recorded at Chirinkotan since the 18th century. Fresh lava flows also descended the SE flank of Chirinkotan during an eruption in the 1880s that was observed by the English fur trader Captain Snow.
Source: Sakhalin Volcanic Eruption Response Team (SVERT) http://www.imgg.ru/?id_d=659
CHIRPOI Kuril Islands (Russia) 46.525°N, 150.875°E; summit elev. 742 m
SVERT reported that a thermal anomaly over Snow, a volcano of Chirpoi, was detected in satellite images on 3 March. Cloud cover obscured views during 4-10 March. The Aviation Color Code remained at Yellow.
Geologic Summary. Chirpoi, a small island lying between the larger islands of Simushir and Urup, contains a half dozen volcanic edifices constructed within an 8-9 km wide, partially submerged caldera. The southern rim of the caldera is exposed on nearby Brat Chirpoev Island. Two volcanoes on Chirpoi Island have been historically active. The symmetrical Cherny volcano, which forms the 691 m high point of the island, erupted twice during the 18th and 19th centuries. The youngest volcano, Snow, originated between 1770 and 1810. It is composed almost entirely of lava flows, many of which have reached the sea on the southern coast. No historical eruptions are known from 742-m-high Brat Chirpoev, but its youthful morphology suggests recent strombolian activity.
Source: Sakhalin Volcanic Eruption Response Team (SVERT) http://www.imgg.ru/en/home.html
COLIMA México 19.514°N, 103.62°W; summit elev. 3850 m
Based on observations of satellite images, the Washington VAAC reported that on 6 March a small ash cloud from Colima drifted NE and dissipated.
Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.
Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html
DUKONO Halmahera 1.68°N, 127.88°E; summit elev. 1335 m
Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that on 11 March an ash plume from Dukono rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted 75 km SE.
Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
ETNA Sicily (Italy) 37.734°N, 15.004°E; summit elev. 3330 m
INGV reported that during 6-10 March Strombolian activity and occasional diffuse ash emissions continued to rise from one or two vents at the base of Etna's New Southeast Crater (NSEC) cone. After several days of lava emissions from a vent on the lower part of the NSEC cone, during 5-6 March lava flows originated only from a higher vent and traveled 1.5 km towards the lower part of the W wall of the Valle del Bove. On 8 March sporadic emissions of hot material with small amounts of volcanic ash originated from Bocca Nuova.
Geologic Summary. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BC. Historical lava flows cover much of the surface of this massive basaltic stratovolcano, the highest and most voluminous in Italy. Two styles of eruptive activity typically occur at Etna. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more of the three prominent summit craters, the Central Crater, NE Crater, and SE Crater. Flank eruptions, typically with higher effusion rates, occur less frequently and originate from fissures that open progressively downward from near the summit. A period of more intense intermittent explosive eruptions from Etna's summit craters began in 1995. The active volcano is monitored by the Instituto Nazionale di Geofisica e Volcanologia (INGV) in Catania.
Source: Sezione di Catania - Osservatorio Etneo (INGV) http://www.ct.ingv.it/
KARYMSKY Eastern Kamchatka (Russia) 54.05°N, 159.45°E; summit elev. 1536 m
KVERT reported that Vulcanian and Strombolian activity at Karymsky continued during 28 February-7 March. Satellite images detected a bright thermal anomaly on the volcano daily, and an ash plume that rose to altitudes of 1.5-2 km (3,300-6,600 ft) a.s.l. and drifted 55 km NE on 28 February. The Aviation Color Code remained at Orange.
Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m
During 5-11 March HVO reported that the circulating lava lake occasionally rose and fell in the deep pit within Kilauea's Halema'uma'u Crater. Gas emissions remained elevated. The plume from the vent continued to deposit variable amounts of ash, spatter, and Pele's hair onto nearby areas. At Pu'u 'O'o Crater, glow emanated from spatter cones on the N and S portions of the crater floor, and from the lava pond in the NE spatter cone. The Kahauale’a 2 lava flow, fed by the NE spatter cone, continued to advance, with breakout lava flows from the main stalled lobe, and burn adjoining forest. A satellite image from 7 March showed that the edge of the most distant breakout flow was 7.9 km NE of Pu’u 'O'o.
Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.
Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/
SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m
KVERT reported that during 28 February-7 March lava-dome extrusion at Shiveluch was accompanied by ash explosions, incandescence, hot avalanches, and fumarolic activity. A bright thermal anomaly was detected daily in satellite images. The Aviation Color Code remained at Orange.
Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. Intermittent explosive eruptions began in the 1990s from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
SINABUNG Sumatra (Indonesia) 3.17°N, 98.392°E; summit elev. 2460 m
Based on wind data, satellite images, and webcam images, the Darwin VAAC reported that during 4-7 and 9-11 March ash plumes from Sinabung rose to altitudes of 3.7-4 km (12,000-13,000 ft) a.s.l. and drifted W and SW. Ash plumes drifted 35-165 km SW and W during 6 and 9-11 March.
Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical, 2460-m-high andesitic-to-dacitic volcano is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks of Sinabung in 1912, although no confirmed historical eruptions were recorded prior to 2010.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m
IG reported that activity at Tungurahua was at moderate levels during 5-11 March; cloud cover occasionally prevented observations. Two explosions during 5-6 March were felt in local areas, and at the Tungurahua Observatory (OVT) in Guadalupe (14 km N). Ashfall was reported in El Manzano (8 km SW) and Palictahua. An explosion on 6 March generated an ash plume that rose 2 km and drifted NE. On 8 March ash plumes rose as high as 2 km and drifted W and NW. The next day an ash plume rose 1 km and drifted NE; ashfall was reported in Minsa.
Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano.
Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/
+++++++++++++++++++++++++++++++++++++
Sally Kuhn Sennert
SI/USGS Weekly Volcanic Activity Report Editor
Global Volcanism Program
http://www.volcano.si.edu/reports/usgs/
Smithsonian Institution, National Museum of Natural History
Department of Mineral Sciences, MRC-119
Washington, D.C., 20560
Phone: 202.633.1805Fax: 202.357.2476
Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).
ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/
To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.
To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.
==============================================================