************************************************** GVP/USGS Weekly Volcanic Activity Report 27 June-3 July 2007 http://www.volcano.si.edu/reports/usgs/ ************************************************** New Activity/Unrest: | Fuego, Guatemala | Kilauea, USA | Kliuchevskoi, Russia Ongoing Activity: | Karymsky, Russia | Popocatépetl, México | Rabaul, Papua New Guinea | Shiveluch, Russia | Soufrière Hills, Montserrat | St. Helens, USA | Tungurahua, Ecuador | Ubinas, Perú New Activity/Unrest FUEGO Guatemala 14.47°N, 90.88°W; summit elev. 3,763 m INSIVUMEH reported that on 27 June, a new 100-m-long lava flow from Fuego was observed that somewhat paralleled the previous flow from March/April 2007. The older lava flow on the S flank continued to advance and produce incandescent blocks that rolled W into the Taniluyá River valley. On 29 June, pyroclastic explosions propelled material about 75 m above the crater. Seven explosions produced whitish plumes to an altitude of about 4 km (13,100 ft) a.s.l. and drifted S. According to CONRED, INSIVUMEH reported on 1 July that during a Strombolian eruption, lava was propelled 200-300 m above the summit. Resulting lava flows traveled about 800 and 1,300 m to the W. Rumbling sounds were heard and shockwaves rattled windows in near by villages. Ash plumes rose to an altitude of 3.9 km (12,800 ft) a.s.l. and drifted W. Multiple pyroclastic flows traveled 1.3-2 km to the W. Based on the report, CONRED raised the Alert Level to Orange in surrounding communities. Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/geofisica/boletin%20formato.htm, Coordinadora Nacional para la Reducción de Desastres (CONRED) http://www.conred.org/boletines/ 2007/mayo2007/boletin250507a.php Fuego Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-09= KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m During 27 June-2 July, views of Kilauea's Pu'u 'O'o crater were obscured by steam. Active lava was not visible anywhere on the flow field or at the site of the 18-19 June eruption. Fuming from the W base of Kane Nui o Hamo and diffuse patches of rain-induced steaming were visible on the Mauna Ulu web camera. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed by lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. The latest Kilauea eruption began in January 1983 along the E rift zone. This long-term ongoing eruption from Pu'u 'O'o-Kupaianaha has produced lava flows that have traveled 11-12 km from the vents to the sea, paving broad areas on the S flank of Kilauea and adding new land beyond the former coastline. Source: US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/hvostatus.php Kilauea information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01- KLIUCHEVSKOI Kamchatka Peninsula, Russia 56.06°N, 160.64°E; summit elev. 4,835 m KVERT reported that during 22-29 June, seismic activity at Kliuchevskoi continued above background levels. Based on atmospheric profiles, ash plumes rose to estimated altitudes of 4.5-9.5 km (14,800-31,200 ft) a.s.l. and drifted in multiple directions during 21-24 and 28 June. A thermal anomaly continued to be detected in the crater on satellite imagery during 22-23 and 26-27 June. On 28 June, seismicity increased and indicated that an ash plume rose to an altitude of 9 km (30,000 ft) a.s.l. The Level of Concern Color Code was raised to Red. Ash plumes were visible on satellite imagery drifting E more than 2,000 km on 29 June and drifting SW more than 900 km on 30 June. Based on video and visual observations, ash plumes rose to an altitude greater than 10 km (32,000 ft) a.s.l. and drifted W on 30 June. Ash plumes were visible on satellite imagery drifting E. On 1 July, plumes drifted N. Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions have occurred during the past 3,000 years, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive eruptions from flank craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/ updates.shtml Kliuchevskoi Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-26= Ongoing Activity KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m During 22-29 June, seismic activity at Karymsky was above background levels and possibly indicated ash plumes to an altitude of 4.7 km (15,400 ft) a.s.l. all days. A steam-and-gas plume was visible on satellite imagery on 27 June. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/ updates.shtml Karymsky Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13= POPOCATÉPETL México 19.02°N, 98.62°W; summit elev. 5,426 m Based on information from the Mexico City MWO and a web camera operated by CENEPRED, the Washington VAAC reported that an ash plume from Popocatépetl rose to an altitude of 6.4 km (21,000 ft) a.s.l. and drifted SSW on 28 June. Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/ messages.html Popocatépetl Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1401-09= RABAUL New Britain Island, Papua New Guinea 4.271°S, 152.203°E; summit elev. 688 m RVO reported that on 30 June and 2 July, explosions from Rabaul caldera's Tavurvur cone produced shockwaves that rattled windows of houses in Rabaul Town and surrounding areas. Ash plumes rose to altitudes of 2.7-3.7 km (8,900-12,100 ft) a.s.l. and drifted N and NW. Ashfall was reported from areas downwind. Incandescence was visible at the summit. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Herman Patia, Rabaul Volcano Observatory Rabaul Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0502-14= SHIVELUCH Kamchatka Peninsula, Russia 56.653°N, 161.360°E; summit elev. 3,283 m KVERT reported that seismic activity at Shiveluch continued above background levels during 22-29 June. Based on seismic interpretation, ash plumes rose to an altitude of 6.5 km (21,300 ft) a.s.l. during the reporting period. A large thermal anomaly was detected in the crater on satellite imagery all days. The Level of Concern Color Code remained at Orange. Based on information from KEMSD, the Tokyo VAAC reported that an eruption plume rose to 4.6 km (15,000 ft) a.s.l. during 27-28 June. Ash was not identified on satellite imagery. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large horseshoe-shaped caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/ updates.shtml, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html Shiveluch Information from the Global Volcanism Program http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=1000-27= SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev. 1,052 m MVO reported that during 22-29 June the lava dome at Soufrière Hills changed very little based on visual observations, and seismic activity was very low. Low-level rockfall and pyroclastic flow activity continued, however, and predominantly affected the Tar River Valley to the E. The volume of the dome was an estimated 208 million cubic meters. The Alert Level remained at 4 (on a scale of 0-5). Geologic Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the east, was formed during an eruption about 4000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory http://www.mvo.ms/ Soufrière Hills Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05= ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m Data from deformation-monitoring instruments indicated that during 27 June-3 July lava-dome growth at Mount St. Helens continued. Seismicity persisted at low levels, punctuated by M 1.5-2.5, and occasionally larger, earthquakes. In some instances, clouds inhibited visual observations. Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers. Source: US Geological Survey Cascades Volcano Observatory http://vulcan.wr.usgs.gov/Volcanoes/ MSH/CurrentActivity/framework.html St. Helens Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05- TUNGURAHUA Ecuador 1.47°S, 78.44°W; summit elev. 5,023 m IG reported that on 27 June, ash plumes from Tungurahua rose to an altitude of 7.5 km (24,600 ft) a.s.l. and drifted NW, W, and SW. Ashfall was reported from areas to the SW. Observers from the NW reported reddish material at the summit. A lahar occurred in a NNW drainage. Roaring noises were reported during 27-28 June. On 2 July, ashfall was reported from areas to the SW. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have been restricted to the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Poltécnica Nacional http://www.igepn.edu.ec/ Tungurahua Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-08= UBINAS Perú 16.355°S, 70.903°W; summit elev. 5,672 m Based on pilot observations and Significant Meteorological Information (SIGMET) advisories, the Buenos Aires VAAC reported that Ubinas produced ash plumes during 27-28 June to altitudes of 5.5-7 km (18,000-23,000 ft) a.s.l. Plumes drifted SW, NE, and E. A diffuse ash plume was visible on satellite imagery on 2 July. Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions. Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/ messages.html Ubinas Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-02= +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 <http://www.volcano.si.edu/reports/usgs/> ++++++++++++++++++++++++++++++++++++++++++ ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================