On 01.06.2018 11:20, Dmitry Osipenko wrote: > On 01.06.2018 01:16, Stefan Agner wrote: >> Add support for the NAND flash controller found on NVIDIA >> Tegra 2 SoCs. This implementation does not make use of the >> command queue feature. Regular operations/data transfers are >> done in PIO mode. Page read/writes with hardware ECC make >> use of the DMA for data transfer. >> >> Signed-off-by: Lucas Stach <dev@xxxxxxxxxx> >> Signed-off-by: Stefan Agner <stefan@xxxxxxxx> >> --- >> MAINTAINERS | 7 + >> drivers/mtd/nand/raw/Kconfig | 6 + >> drivers/mtd/nand/raw/Makefile | 1 + >> drivers/mtd/nand/raw/tegra_nand.c | 1143 +++++++++++++++++++++++++++++ >> 4 files changed, 1157 insertions(+) >> create mode 100644 drivers/mtd/nand/raw/tegra_nand.c >> >> diff --git a/MAINTAINERS b/MAINTAINERS >> index 58b9861ccf99..c2e5571c85d4 100644 >> --- a/MAINTAINERS >> +++ b/MAINTAINERS >> @@ -13844,6 +13844,13 @@ M: Laxman Dewangan <ldewangan@xxxxxxxxxx> >> S: Supported >> F: drivers/input/keyboard/tegra-kbc.c >> >> +TEGRA NAND DRIVER >> +M: Stefan Agner <stefan@xxxxxxxx> >> +M: Lucas Stach <dev@xxxxxxxxxx> >> +S: Maintained >> +F: Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt >> +F: drivers/mtd/nand/raw/tegra_nand.c >> + >> TEGRA PWM DRIVER >> M: Thierry Reding <thierry.reding@xxxxxxxxx> >> S: Supported >> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig >> index 19a2b283fbbe..e9093f52371e 100644 >> --- a/drivers/mtd/nand/raw/Kconfig >> +++ b/drivers/mtd/nand/raw/Kconfig >> @@ -534,4 +534,10 @@ config MTD_NAND_MTK >> Enables support for NAND controller on MTK SoCs. >> This controller is found on mt27xx, mt81xx, mt65xx SoCs. >> >> +config MTD_NAND_TEGRA >> + tristate "Support for NAND controller on NVIDIA Tegra" >> + depends on ARCH_TEGRA || COMPILE_TEST >> + help >> + Enables support for NAND flash controller on NVIDIA Tegra SoC. >> + >> endif # MTD_NAND >> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile >> index 165b7ef9e9a1..d5a5f9832b88 100644 >> --- a/drivers/mtd/nand/raw/Makefile >> +++ b/drivers/mtd/nand/raw/Makefile >> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o >> obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ >> obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o >> obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o >> +obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o >> >> nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o >> nand-objs += nand_amd.o >> diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c >> new file mode 100644 >> index 000000000000..e9664f2938a3 >> --- /dev/null >> +++ b/drivers/mtd/nand/raw/tegra_nand.c >> @@ -0,0 +1,1143 @@ >> +// SPDX-License-Identifier: GPL-2.0 >> +/* >> + * Copyright (C) 2018 Stefan Agner <stefan@xxxxxxxx> >> + * Copyright (C) 2014-2015 Lucas Stach <dev@xxxxxxxxxx> >> + * Copyright (C) 2012 Avionic Design GmbH >> + */ >> + >> +#include <linux/clk.h> >> +#include <linux/completion.h> >> +#include <linux/delay.h> >> +#include <linux/dma-mapping.h> >> +#include <linux/err.h> >> +#include <linux/gpio/consumer.h> >> +#include <linux/interrupt.h> >> +#include <linux/io.h> >> +#include <linux/module.h> >> +#include <linux/mtd/partitions.h> >> +#include <linux/mtd/rawnand.h> >> +#include <linux/of.h> >> +#include <linux/platform_device.h> >> +#include <linux/reset.h> >> + >> +#define CMD 0x00 >> +#define CMD_GO BIT(31) >> +#define CMD_CLE BIT(30) >> +#define CMD_ALE BIT(29) >> +#define CMD_PIO BIT(28) >> +#define CMD_TX BIT(27) >> +#define CMD_RX BIT(26) >> +#define CMD_SEC_CMD BIT(25) >> +#define CMD_AFT_DAT BIT(24) >> +#define CMD_TRANS_SIZE(x) (((x - 1) & 0xf) << 20) >> +#define CMD_A_VALID BIT(19) >> +#define CMD_B_VALID BIT(18) >> +#define CMD_RD_STATUS_CHK BIT(17) >> +#define CMD_RBSY_CHK BIT(16) >> +#define CMD_CE(x) BIT((8 + ((x) & 0x7))) >> +#define CMD_CLE_SIZE(x) (((x - 1) & 0x3) << 4) >> +#define CMD_ALE_SIZE(x) (((x - 1) & 0xf) << 0) >> + >> +#define STATUS 0x04 >> + >> +#define ISR 0x08 >> +#define ISR_CORRFAIL_ERR BIT(24) >> +#define ISR_UND BIT(7) >> +#define ISR_OVR BIT(6) >> +#define ISR_CMD_DONE BIT(5) >> +#define ISR_ECC_ERR BIT(4) >> + >> +#define IER 0x0c >> +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) >> +#define IER_UND BIT(7) >> +#define IER_OVR BIT(6) >> +#define IER_CMD_DONE BIT(5) >> +#define IER_ECC_ERR BIT(4) >> +#define IER_GIE BIT(0) >> + >> +#define CFG 0x10 >> +#define CFG_HW_ECC BIT(31) >> +#define CFG_ECC_SEL BIT(30) >> +#define CFG_ERR_COR BIT(29) >> +#define CFG_PIPE_EN BIT(28) >> +#define CFG_TVAL_4 (0 << 24) >> +#define CFG_TVAL_6 (1 << 24) >> +#define CFG_TVAL_8 (2 << 24) >> +#define CFG_SKIP_SPARE BIT(23) >> +#define CFG_BUS_WIDTH_16 BIT(21) >> +#define CFG_COM_BSY BIT(20) >> +#define CFG_PS_256 (0 << 16) >> +#define CFG_PS_512 (1 << 16) >> +#define CFG_PS_1024 (2 << 16) >> +#define CFG_PS_2048 (3 << 16) >> +#define CFG_PS_4096 (4 << 16) >> +#define CFG_SKIP_SPARE_SIZE_4 (0 << 14) >> +#define CFG_SKIP_SPARE_SIZE_8 (1 << 14) >> +#define CFG_SKIP_SPARE_SIZE_12 (2 << 14) >> +#define CFG_SKIP_SPARE_SIZE_16 (3 << 14) >> +#define CFG_TAG_BYTE_SIZE(x) ((x) & 0xff) >> + >> +#define TIMING_1 0x14 >> +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) >> +#define TIMING_TWB(x) (((x) & 0xf) << 24) >> +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) >> +#define TIMING_TWHR(x) (((x) & 0xf) << 16) >> +#define TIMING_TCS(x) (((x) & 0x3) << 14) >> +#define TIMING_TWH(x) (((x) & 0x3) << 12) >> +#define TIMING_TWP(x) (((x) & 0xf) << 8) >> +#define TIMING_TRH(x) (((x) & 0x3) << 4) >> +#define TIMING_TRP(x) (((x) & 0xf) << 0) >> + >> +#define RESP 0x18 >> + >> +#define TIMING_2 0x1c >> +#define TIMING_TADL(x) ((x) & 0xf) >> + >> +#define CMD_1 0x20 >> +#define CMD_2 0x24 >> +#define ADDR_1 0x28 >> +#define ADDR_2 0x2c >> + >> +#define DMA_CTRL 0x30 >> +#define DMA_CTRL_GO BIT(31) >> +#define DMA_CTRL_IN (0 << 30) >> +#define DMA_CTRL_OUT BIT(30) >> +#define DMA_CTRL_PERF_EN BIT(29) >> +#define DMA_CTRL_IE_DONE BIT(28) >> +#define DMA_CTRL_REUSE BIT(27) >> +#define DMA_CTRL_BURST_1 (2 << 24) >> +#define DMA_CTRL_BURST_4 (3 << 24) >> +#define DMA_CTRL_BURST_8 (4 << 24) >> +#define DMA_CTRL_BURST_16 (5 << 24) >> +#define DMA_CTRL_IS_DONE BIT(20) >> +#define DMA_CTRL_EN_A BIT(2) >> +#define DMA_CTRL_EN_B BIT(1) >> + >> +#define DMA_CFG_A 0x34 >> +#define DMA_CFG_B 0x38 >> + >> +#define FIFO_CTRL 0x3c >> +#define FIFO_CTRL_CLR_ALL BIT(3) >> + >> +#define DATA_PTR 0x40 >> +#define TAG_PTR 0x44 >> +#define ECC_PTR 0x48 >> + >> +#define DEC_STATUS 0x4c >> +#define DEC_STATUS_A_ECC_FAIL BIT(1) >> +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 >> +#define DEC_STATUS_ERR_COUNT_SHIFT 16 >> + >> +#define HWSTATUS_CMD 0x50 >> +#define HWSTATUS_MASK 0x54 >> +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) >> +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) >> +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) >> +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) >> + >> +#define BCH_CONFIG 0xcc >> +#define BCH_ENABLE BIT(0) >> +#define BCH_TVAL_4 (0 << 4) >> +#define BCH_TVAL_8 (1 << 4) >> +#define BCH_TVAL_14 (2 << 4) >> +#define BCH_TVAL_16 (3 << 4) >> + >> +#define DEC_STAT_RESULT 0xd0 >> +#define DEC_STAT_BUF 0xd4 >> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 >> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 >> +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 >> +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 >> +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 >> +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 >> + >> +#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) >> + >> +#define SKIP_SPARE_BYTES 4 >> +#define BITS_PER_STEP_RS 18 >> +#define BITS_PER_STEP_BCH 13 >> + >> +struct tegra_nand_controller { >> + struct nand_hw_control controller; >> + void __iomem *regs; >> + struct clk *clk; >> + struct device *dev; >> + struct completion command_complete; >> + struct completion dma_complete; >> + bool last_read_error; >> + int cur_chip; >> + struct nand_chip *chip; >> +}; >> + >> +struct tegra_nand_chip { >> + struct nand_chip chip; >> + struct gpio_desc *wp_gpio; >> + struct mtd_oob_region tag; >> +}; >> + >> +static inline struct tegra_nand_controller *to_tegra_ctrl( >> + struct nand_hw_control *hw_ctrl) >> +{ >> + return container_of(hw_ctrl, struct tegra_nand_controller, controller); >> +} >> + >> +static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip) >> +{ >> + return container_of(chip, struct tegra_nand_chip, chip); >> +} >> + >> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oobregion) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, >> + BITS_PER_BYTE); >> + >> + if (section > 0) >> + return -ERANGE; >> + >> + oobregion->offset = SKIP_SPARE_BYTES; >> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); >> + >> + return 0; >> +} >> + >> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oobregion) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, >> + BITS_PER_BYTE); >> + >> + if (section > 0) >> + return -ERANGE; >> + >> + oobregion->offset = SKIP_SPARE_BYTES + >> + round_up(bytes_per_step * chip->ecc.steps, 4); >> + oobregion->length = mtd->oobsize - oobregion->offset; >> + >> + return 0; >> +} >> + >> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { >> + .ecc = tegra_nand_ooblayout_rs_ecc, >> + .free = tegra_nand_ooblayout_rs_free, >> +}; >> + >> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oobregion) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, >> + BITS_PER_BYTE); >> + >> + if (section > 0) >> + return -ERANGE; >> + >> + oobregion->offset = SKIP_SPARE_BYTES; >> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); >> + >> + return 0; >> +} >> + >> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oobregion) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, >> + BITS_PER_BYTE); >> + >> + if (section > 0) >> + return -ERANGE; >> + >> + oobregion->offset = SKIP_SPARE_BYTES + >> + round_up(bytes_per_step * chip->ecc.steps, 4); >> + oobregion->length = mtd->oobsize - oobregion->offset; >> + >> + return 0; >> +} >> + >> +/* >> + * Layout with tag bytes is >> + * >> + * -------------------------------------------------------------------------- >> + * | main area | skip bytes | tag bytes | parity | .. | >> + * -------------------------------------------------------------------------- >> + * >> + * If not tag bytes are written, parity moves right after skip bytes! >> + */ >> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { >> + .ecc = tegra_nand_ooblayout_bch_ecc, >> + .free = tegra_nand_ooblayout_bch_free, >> +}; >> + >> +static irqreturn_t tegra_nand_irq(int irq, void *data) >> +{ >> + struct tegra_nand_controller *ctrl = data; >> + u32 isr, dma; >> + >> + isr = readl_relaxed(ctrl->regs + ISR); >> + dma = readl_relaxed(ctrl->regs + DMA_CTRL); >> + dev_dbg(ctrl->dev, "isr %08x\n", isr); >> + >> + if (!isr && !(dma & DMA_CTRL_IS_DONE)) >> + return IRQ_NONE; >> + >> + /* >> + * The bit name is somewhat missleading: This is also set when >> + * HW ECC was successful. The data sheet states: >> + * Correctable OR Un-correctable errors occurred in the DMA transfer... >> + */ >> + if (isr & ISR_CORRFAIL_ERR) >> + ctrl->last_read_error = true; >> + >> + if (isr & ISR_CMD_DONE) >> + complete(&ctrl->command_complete); >> + >> + if (isr & ISR_UND) >> + dev_err(ctrl->dev, "FIFO underrun\n"); >> + >> + if (isr & ISR_OVR) >> + dev_err(ctrl->dev, "FIFO overrun\n"); >> + >> + /* handle DMA interrupts */ >> + if (dma & DMA_CTRL_IS_DONE) { >> + writel_relaxed(dma, ctrl->regs + DMA_CTRL); >> + complete(&ctrl->dma_complete); >> + } >> + >> + /* clear interrupts */ >> + writel_relaxed(isr, ctrl->regs + ISR); >> + >> + return IRQ_HANDLED; >> +} >> + >> +static const char * const tegra_nand_reg_names[] = { >> + "COMMAND", >> + "STATUS", >> + "ISR", >> + "IER", >> + "CONFIG", >> + "TIMING", >> + NULL, >> + "TIMING2", >> + "CMD_REG1", >> + "CMD_REG2", >> + "ADDR_REG1", >> + "ADDR_REG2", >> + "DMA_MST_CTRL", >> + "DMA_CFG_A", >> + "DMA_CFG_B", >> + "FIFO_CTRL", >> +}; >> + >> +static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) >> +{ >> + u32 reg; >> + int i; >> + >> + dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); >> + for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { >> + const char *reg_name = tegra_nand_reg_names[i]; >> + >> + if (!reg_name) >> + continue; >> + >> + reg = readl_relaxed(ctrl->regs + (i * 4)); >> + dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); >> + } >> +} >> + >> +static int tegra_nand_cmd(struct nand_chip *chip, >> + const struct nand_subop *subop) >> +{ >> + const struct nand_op_instr *instr; >> + const struct nand_op_instr *instr_data_in = NULL; >> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >> + unsigned int op_id, size = 0, offset = 0; >> + bool first_cmd = true; >> + u32 reg, cmd = 0; >> + int ret; >> + >> + for (op_id = 0; op_id < subop->ninstrs; op_id++) { >> + unsigned int naddrs, i; >> + const u8 *addrs; >> + u32 addr1 = 0, addr2 = 0; >> + >> + instr = &subop->instrs[op_id]; >> + >> + switch (instr->type) { >> + case NAND_OP_CMD_INSTR: >> + if (first_cmd) { >> + cmd |= CMD_CLE; >> + writel_relaxed(instr->ctx.cmd.opcode, >> + ctrl->regs + CMD_1); >> + } else { >> + cmd |= CMD_SEC_CMD; >> + writel_relaxed(instr->ctx.cmd.opcode, >> + ctrl->regs + CMD_2); >> + } >> + first_cmd = false; >> + break; >> + case NAND_OP_ADDR_INSTR: >> + offset = nand_subop_get_addr_start_off(subop, op_id); >> + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); >> + addrs = &instr->ctx.addr.addrs[offset]; >> + >> + cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs); >> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) >> + addr1 |= *addrs++ << (BITS_PER_BYTE * i); >> + naddrs -= i; >> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) >> + addr2 |= *addrs++ << (BITS_PER_BYTE * i); >> + writel_relaxed(addr1, ctrl->regs + ADDR_1); >> + writel_relaxed(addr2, ctrl->regs + ADDR_2); >> + break; >> + >> + case NAND_OP_DATA_IN_INSTR: >> + size = nand_subop_get_data_len(subop, op_id); >> + offset = nand_subop_get_data_start_off(subop, op_id); >> + >> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_RX | >> + CMD_A_VALID; >> + >> + instr_data_in = instr; >> + break; >> + >> + case NAND_OP_DATA_OUT_INSTR: >> + size = nand_subop_get_data_len(subop, op_id); >> + offset = nand_subop_get_data_start_off(subop, op_id); >> + >> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_TX | >> + CMD_A_VALID; >> + >> + memcpy(®, instr->ctx.data.buf.out + offset, size); >> + writel_relaxed(reg, ctrl->regs + RESP); >> + >> + break; >> + case NAND_OP_WAITRDY_INSTR: >> + cmd |= CMD_RBSY_CHK; >> + break; >> + >> + } >> + } >> + >> + cmd |= CMD_GO | CMD_CE(ctrl->cur_chip); >> + writel_relaxed(cmd, ctrl->regs + CMD); >> + ret = wait_for_completion_timeout(&ctrl->command_complete, >> + msecs_to_jiffies(500)); >> + if (!ret) { >> + dev_err(ctrl->dev, "CMD timeout\n"); >> + tegra_nand_dump_reg(ctrl); >> + return -ETIMEDOUT; >> + } > > - wait_for_completion_timeout() could fail Not according to: https://elixir.bootlin.com/linux/latest/source/kernel/sched/completion.c#L140 https://www.kernel.org/doc/Documentation/scheduler/completion.txt Afaik, only the _interruptible variant can fail. Btw, maybe we should use the _io variant? > - HW shall be reset > - completion shall be re-inited because IRQ could fire just after the completion > timeout > > I'd write it something like this: > > #define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) > > #define HWSTATUS_MASK (HWSTATUS_RDSTATUS_MASK(1) | \ > HWSTATUS_RDSTATUS_VALUE(0) | \ > HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ > HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) > > #define HW_TIMEOUT 500 > > void tegra_nand_controller_reset(struct tegra_nand_controller *ctrl) > { > int err; > > disable_irq(ctrl->irq); > > err = reset_control_reset(ctrl->rst); > if (err) { > dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); > msleep(HW_TIMEOUT); > } > > writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD); > writel_relaxed(HWSTATUS_MASK, ctrl->regs + HWSTATUS_MASK); > writel_relaxed(INT_MASK, ctrl->regs + ISR); If we do a controller reset, there is much more state than that which needs to be restored. A lot of it is not readily available currently (timing, ECC settings...) That seems a lot of work for a code path I do not intend to ever use :-) -- Stefan > > reinit_completion(&ctrl->command_complete); > reinit_completion(&ctrl->dma_complete); > > enable_irq(ctrl->irq); > } > > ... > > ret = wait_for_completion_timeout(&ctrl->command_complete, > msecs_to_jiffies(HW_TIMEOUT)); > if (ret <= 0) { > if (ret == 0) { > dev_err(ctrl->dev, "CMD timeout\n"); > tegra_nand_dump_reg(ctrl); > ret = -ETIMEDOUT; > } else { > dev_err(ctrl->dev, > "Failed to wait for CMD completion: %d\n", > ret); > } > > tegra_nand_controller_reset(ctrl); > return ret; > } > >> + >> + if (instr_data_in) { >> + reg = readl_relaxed(ctrl->regs + RESP); >> + memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size); >> + } >> + >> + return 0; >> +} >> + >> +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( >> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), >> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, >> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), >> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), >> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), >> + ); >> + >> +static int tegra_nand_exec_op(struct nand_chip *chip, >> + const struct nand_operation *op, >> + bool check_only) >> +{ >> + return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, >> + check_only); >> +} >> +static void tegra_nand_select_chip(struct mtd_info *mtd, int chip_nr) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >> + >> + ctrl->cur_chip = chip_nr; >> +} >> + >> +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, >> + struct nand_chip *chip, bool enable) >> +{ >> + u32 reg; >> + >> + switch (chip->ecc.algo) { >> + case NAND_ECC_RS: >> + reg = readl_relaxed(ctrl->regs + CFG); >> + if (enable) >> + reg |= CFG_HW_ECC | CFG_ERR_COR; >> + else >> + reg &= ~(CFG_HW_ECC | CFG_ERR_COR); >> + writel_relaxed(reg, ctrl->regs + CFG); >> + break; >> + case NAND_ECC_BCH: >> + reg = readl_relaxed(ctrl->regs + BCH_CONFIG); >> + if (enable) >> + reg |= BCH_ENABLE; >> + else >> + reg &= ~BCH_ENABLE; >> + writel_relaxed(reg, ctrl->regs + BCH_CONFIG); >> + break; >> + default: >> + dev_err(ctrl->dev, "Unsupported hardware ECC algorithm\n"); >> + break; >> + } >> +} >> + >> +static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip, >> + void *buf, int oob_required, int page, >> + bool read) >> +{ >> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >> + struct tegra_nand_chip *nand = to_tegra_chip(chip); >> + enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; >> + dma_addr_t dma_addr; >> + u32 cmd, dma_ctrl; >> + int ret, dma_len; >> + >> + if (read) { >> + writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_1); >> + writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_2); >> + } else { >> + writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_1); >> + writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_2); >> + } >> + cmd = CMD_CLE | CMD_SEC_CMD; >> + >> + /* Lower 16-bits are column, always 0 */ >> + writel_relaxed(page << 16, ctrl->regs + ADDR_1); >> + >> + if (chip->options & NAND_ROW_ADDR_3) { >> + writel_relaxed(page >> 16, ctrl->regs + ADDR_2); >> + cmd |= CMD_ALE | CMD_ALE_SIZE(5); >> + } else { >> + cmd |= CMD_ALE | CMD_ALE_SIZE(4); >> + } >> + >> + dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0); >> + dma_addr = dma_map_single(ctrl->dev, buf, dma_len, dir); >> + ret = dma_mapping_error(ctrl->dev, dma_addr); >> + if (ret) { >> + dev_err(ctrl->dev, "dma mapping error\n"); >> + return -EINVAL; >> + } >> + >> + writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); >> + writel_relaxed(dma_addr, ctrl->regs + DATA_PTR); >> + >> + if (oob_required) { >> + dma_addr_t dma_addr_tag = dma_addr + mtd->writesize; >> + >> + writel_relaxed(nand->tag.length - 1, ctrl->regs + DMA_CFG_B); >> + writel_relaxed(dma_addr_tag + nand->tag.offset, >> + ctrl->regs + TAG_PTR); >> + } else { >> + writel_relaxed(0, ctrl->regs + DMA_CFG_B); >> + writel_relaxed(0, ctrl->regs + TAG_PTR); >> + } >> + >> + dma_ctrl = DMA_CTRL_GO | DMA_CTRL_PERF_EN | >> + DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE | >> + DMA_CTRL_BURST_16 | DMA_CTRL_EN_A; >> + if (oob_required) >> + dma_ctrl |= DMA_CTRL_EN_B; >> + if (read) >> + dma_ctrl |= DMA_CTRL_IN | DMA_CTRL_REUSE; >> + else >> + dma_ctrl |= DMA_CTRL_OUT; >> + >> + writel_relaxed(dma_ctrl, ctrl->regs + DMA_CTRL); >> + >> + cmd |= CMD_GO | CMD_RBSY_CHK | CMD_TRANS_SIZE(9) | >> + CMD_CE(ctrl->cur_chip) | CMD_A_VALID; >> + if (oob_required) >> + cmd |= CMD_B_VALID; >> + if (read) >> + cmd |= CMD_RX; >> + else >> + cmd |= CMD_TX | CMD_AFT_DAT; >> + >> + writel_relaxed(cmd, ctrl->regs + CMD); >> + >> + ret = wait_for_completion_timeout(&ctrl->command_complete, >> + msecs_to_jiffies(500)); >> + if (!ret) { >> + dev_err(ctrl->dev, "CMD timeout\n"); >> + tegra_nand_dump_reg(ctrl); >> + ret = -ETIMEDOUT; >> + goto err_unmap_dma; >> + } >> + >> + ret = wait_for_completion_timeout(&ctrl->dma_complete, >> + msecs_to_jiffies(500)); >> + if (!ret) { >> + dev_err(ctrl->dev, "DMA timeout\n"); >> + tegra_nand_dump_reg(ctrl); >> + ret = -ETIMEDOUT; >> + goto err_unmap_dma; >> + } >> + ret = 0; > > Same as the above comment regarding the wait_for_completion_timeout(). > >> + >> +err_unmap_dma: >> + dma_unmap_single(ctrl->dev, dma_addr, dma_len, dir); >> + >> + return ret; >> +} >> + >> +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd, >> + struct nand_chip *chip, >> + uint8_t *buf, int oob_required, int page) >> +{ >> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >> + u32 dec_stat, max_corr_cnt; >> + unsigned long fail_sec_flag; >> + int ret; >> + >> + tegra_nand_hw_ecc(ctrl, chip, true); >> + ret = tegra_nand_page_xfer(mtd, chip, buf, oob_required, page, true); >> + tegra_nand_hw_ecc(ctrl, chip, false); >> + if (ret) >> + return ret; >> + >> + /* No correctable or un-correctable errors, page must have 0 bitflips */ >> + if (!ctrl->last_read_error) >> + return 0; >> + >> + /* >> + * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF >> + * which contains information for all ECC selections. >> + * >> + * Note that since we do not use Command Queues DEC_RESULT does not >> + * state the number of pages we can read from the DEC_STAT_BUF. But >> + * since CORRFAIL_ERR did occur during page read we do have a valid >> + * result in DEC_STAT_BUF. >> + */ >> + ctrl->last_read_error = false; >> + dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF); >> + >> + fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >> >> + DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT; >> + >> + max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> >> + DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; >> + >> + if (fail_sec_flag) { >> + int bit, max_bitflips = 0; >> + >> + /* >> + * Check if all sectors in a page failed. If only some failed >> + * its definitly not an erased page and we can return error >> + * stats right away. >> + * >> + * E.g. controller might return fail_sec_flag with 0x4, which >> + * would mean only the third sector failed to correct. >> + */ >> + if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) { >> + mtd->ecc_stats.failed += hweight8(fail_sec_flag); >> + return max_corr_cnt; >> + } >> + >> + /* >> + * All sectors failed to correct, but the ECC isn't smart >> + * enough to figure out if a page is really completely erased. >> + * We check the read data here to figure out if it's a >> + * legitimate ECC error or only an erased page. >> + */ >> + for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) { >> + u8 *data = buf + (chip->ecc.size * bit); >> + >> + ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, >> + NULL, 0, >> + NULL, 0, >> + chip->ecc.strength); >> + if (ret < 0) >> + mtd->ecc_stats.failed++; >> + else >> + max_bitflips = max(ret, max_bitflips); >> + } >> + >> + return max_t(unsigned int, max_corr_cnt, max_bitflips); >> + } else { >> + int corr_sec_flag; >> + >> + corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> >> + DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; >> + >> + /* >> + * The value returned in the register is the maximum of >> + * bitflips encountered in any of the ECC regions. As there is >> + * no way to get the number of bitflips in a specific regions >> + * we are not able to deliver correct stats but instead >> + * overestimate the number of corrected bitflips by assuming >> + * that all regions where errors have been corrected >> + * encountered the maximum number of bitflips. >> + */ >> + mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); >> + >> + return max_corr_cnt; >> + } >> + >> +} >> + >> +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd, >> + struct nand_chip *chip, >> + const uint8_t *buf, int oob_required, >> + int page) >> +{ >> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >> + int ret; >> + >> + tegra_nand_hw_ecc(ctrl, chip, true); >> + ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_required, page, >> + false); >> + tegra_nand_hw_ecc(ctrl, chip, false); >> + >> + return ret; >> +} >> + >> +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, >> + const struct nand_sdr_timings *timings) >> +{ >> + /* >> + * The period (and all other timings in this function) is in ps, >> + * so need to take care here to avoid integer overflows. >> + */ >> + unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; >> + unsigned int period = DIV_ROUND_UP(1000000, rate); >> + u32 val, reg = 0; >> + >> + val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, >> + timings->tRC_min), period); >> + reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3)); >> + >> + val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), >> + max(timings->tALS_min, timings->tALH_min)), >> + period); >> + reg |= TIMING_TCS(OFFSET(val, 2)); >> + >> + val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, >> + period); >> + reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1)); >> + >> + reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1)); >> + reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1)); >> + reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1)); >> + reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1)); >> + reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1)); >> + >> + writel_relaxed(reg, ctrl->regs + TIMING_1); >> + >> + val = DIV_ROUND_UP(timings->tADL_min, period); >> + reg = TIMING_TADL(OFFSET(val, 3)); >> + >> + writel_relaxed(reg, ctrl->regs + TIMING_2); >> +} >> + >> +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline, >> + const struct nand_data_interface *conf) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >> + const struct nand_sdr_timings *timings; >> + >> + timings = nand_get_sdr_timings(conf); >> + if (IS_ERR(timings)) >> + return PTR_ERR(timings); >> + >> + if (csline == NAND_DATA_IFACE_CHECK_ONLY) >> + return 0; >> + >> + tegra_nand_setup_timing(ctrl, timings); >> + >> + return 0; >> +} >> + >> + >> +const int rs_strength_bootable[] = { 4 }; >> +const int rs_strength[] = { 4, 6, 8 }; >> +const int bch_strength_bootable[] = { 8, 16 }; >> +const int bch_strength[] = { 4, 8, 14, 16 }; > > These const's shall be 'static'. > >> + >> +static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength, >> + int strength_len, int oobsize) >> +{ >> + bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE; >> + int i; >> + >> + /* >> + * Loop through available strengths. Backwards in case we try to >> + * maximize the BCH strength. >> + */ >> + for (i = 0; i < strength_len; i++) { >> + int strength_sel, bytes_per_step, bytes_per_page; >> + >> + if (maximize) { >> + strength_sel = strength[strength_len - i - 1]; >> + } else { >> + strength_sel = strength[i]; >> + >> + if (strength_sel < chip->ecc_strength_ds) >> + continue; >> + } >> + >> + bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * strength_sel, >> + BITS_PER_BYTE); >> + bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4); >> + >> + /* Check whether strength fits OOB */ >> + if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES)) >> + return strength_sel; >> + } >> + >> + return -EINVAL; >> +} >> + >> +static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize) >> +{ >> + const int *strength; >> + int strength_len; >> + >> + switch (chip->ecc.algo) { >> + case NAND_ECC_RS: >> + if (chip->options & NAND_IS_BOOT_MEDIUM) { >> + strength = rs_strength_bootable; >> + strength_len = ARRAY_SIZE(rs_strength_bootable); >> + } else { >> + strength = rs_strength; >> + strength_len = ARRAY_SIZE(rs_strength); >> + } >> + break; >> + case NAND_ECC_BCH: >> + if (chip->options & NAND_IS_BOOT_MEDIUM) { >> + strength = bch_strength_bootable; >> + strength_len = ARRAY_SIZE(bch_strength_bootable); >> + } else { >> + strength = bch_strength; >> + strength_len = ARRAY_SIZE(bch_strength); >> + } >> + break; >> + default: >> + return -EINVAL; >> + } >> + >> + return tegra_nand_get_strength(chip, strength, strength_len, oobsize); >> +} >> + >> +static int tegra_nand_chips_init(struct device *dev, >> + struct tegra_nand_controller *ctrl) >> +{ >> + struct device_node *np = dev->of_node; >> + struct device_node *np_nand; >> + int nchips = of_get_child_count(np); >> + struct tegra_nand_chip *nand; >> + struct mtd_info *mtd; >> + struct nand_chip *chip; >> + unsigned long config, bch_config = 0; >> + int bits_per_step; >> + int ret; >> + >> + if (nchips != 1) { >> + dev_err(dev, "Currently only one NAND chip supported\n"); >> + return -EINVAL; >> + } >> + >> + np_nand = of_get_next_child(np, NULL); >> + >> + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); >> + if (!nand) >> + return -ENOMEM; >> + >> + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); >> + >> + if (IS_ERR(nand->wp_gpio)) { >> + ret = PTR_ERR(nand->wp_gpio); >> + dev_err(dev, "Failed to request WP GPIO: %d\n", ret); >> + return ret; >> + } >> + >> + chip = &nand->chip; >> + chip->controller = &ctrl->controller; >> + >> + mtd = nand_to_mtd(chip); >> + >> + mtd->dev.parent = dev; >> + if (!mtd->name) >> + mtd->name = "tegra_nand"; >> + mtd->owner = THIS_MODULE; >> + >> + nand_set_flash_node(chip, np_nand); >> + >> + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER; >> + chip->exec_op = tegra_nand_exec_op; >> + chip->select_chip = tegra_nand_select_chip; >> + chip->setup_data_interface = tegra_nand_setup_data_interface; >> + >> + ret = nand_scan_ident(mtd, 1, NULL); >> + if (ret) >> + return ret; >> + >> + if (chip->bbt_options & NAND_BBT_USE_FLASH) >> + chip->bbt_options |= NAND_BBT_NO_OOB; >> + >> + chip->ecc.mode = NAND_ECC_HW; >> + chip->ecc.size = 512; >> + chip->ecc.steps = mtd->writesize / chip->ecc.size; >> + if (chip->ecc_step_ds != 512) { >> + dev_err(dev, "Unsupported step size %d\n", chip->ecc_step_ds); >> + return -EINVAL; >> + } >> + >> + chip->ecc.read_page = tegra_nand_read_page_hwecc; >> + chip->ecc.write_page = tegra_nand_write_page_hwecc; >> + >> + config = readl_relaxed(ctrl->regs + CFG); >> + config |= CFG_PIPE_EN | CFG_SKIP_SPARE | CFG_SKIP_SPARE_SIZE_4; >> + >> + if (chip->options & NAND_BUSWIDTH_16) >> + config |= CFG_BUS_WIDTH_16; >> + >> + if (chip->ecc.algo == NAND_ECC_UNKNOWN) { >> + if (mtd->writesize < 2048) >> + chip->ecc.algo = NAND_ECC_RS; >> + else >> + chip->ecc.algo = NAND_ECC_BCH; >> + } >> + >> + if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) { >> + dev_err(dev, "BCH supportes 2K or 4K page size only\n"); >> + return -EINVAL; >> + } >> + >> + if (!chip->ecc.strength) { >> + ret = tegra_nand_select_strength(chip, mtd->oobsize); >> + if (ret < 0) { >> + dev_err(dev, "No valid strenght found, minimum %d\n", >> + chip->ecc_strength_ds); >> + return ret; >> + } >> + >> + chip->ecc.strength = ret; >> + } >> + >> + switch (chip->ecc.algo) { >> + case NAND_ECC_RS: >> + bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; >> + mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); >> + switch (chip->ecc.strength) { >> + case 4: >> + config |= CFG_ECC_SEL | CFG_TVAL_4; >> + break; >> + case 6: >> + config |= CFG_ECC_SEL | CFG_TVAL_6; >> + break; >> + case 8: >> + config |= CFG_ECC_SEL | CFG_TVAL_8; >> + break; >> + default: >> + dev_err(dev, "ECC strength %d not supported\n", >> + chip->ecc.strength); >> + return -EINVAL; >> + } >> + break; >> + case NAND_ECC_BCH: >> + bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; >> + mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); >> + switch (chip->ecc.strength) { >> + case 4: >> + bch_config = BCH_TVAL_4; >> + break; >> + case 8: >> + bch_config = BCH_TVAL_8; >> + break; >> + case 14: >> + bch_config = BCH_TVAL_14; >> + break; >> + case 16: >> + bch_config = BCH_TVAL_16; >> + break; >> + default: >> + dev_err(dev, "ECC strength %d not supported\n", >> + chip->ecc.strength); >> + return -EINVAL; >> + } >> + break; >> + default: >> + dev_err(dev, "ECC algorithm not supported\n"); >> + return -EINVAL; >> + } >> + >> + dev_info(dev, "Using %s with strength %d per 512 byte step\n", >> + chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS", >> + chip->ecc.strength); >> + >> + chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE); >> + >> + switch (mtd->writesize) { >> + case 256: >> + config |= CFG_PS_256; >> + break; >> + case 512: >> + config |= CFG_PS_512; >> + break; >> + case 1024: >> + config |= CFG_PS_1024; >> + break; >> + case 2048: >> + config |= CFG_PS_2048; >> + break; >> + case 4096: >> + config |= CFG_PS_4096; >> + break; >> + default: >> + dev_err(dev, "Unsupported writesize %d\n", mtd->writesize); >> + return -ENODEV; >> + } >> + >> + writel_relaxed(config, ctrl->regs + CFG); >> + writel_relaxed(bch_config, ctrl->regs + BCH_CONFIG); >> + >> + ret = nand_scan_tail(mtd); >> + if (ret) >> + return ret; >> + >> + mtd_ooblayout_free(mtd, 0, &nand->tag); >> + >> + config |= CFG_TAG_BYTE_SIZE(nand->tag.length - 1); >> + writel_relaxed(config, ctrl->regs + CFG); >> + >> + ret = mtd_device_register(mtd, NULL, 0); >> + if (ret) { >> + dev_err(dev, "Failed to register mtd device: %d\n", ret); >> + nand_cleanup(chip); >> + return ret; >> + } >> + >> + ctrl->chip = chip; >> + >> + return 0; >> +} >> + >> +static int tegra_nand_probe(struct platform_device *pdev) >> +{ >> + struct reset_control *rst; >> + struct tegra_nand_controller *ctrl; >> + struct resource *res; >> + unsigned long reg; >> + int irq, err = 0; >> + >> + ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); >> + if (!ctrl) >> + return -ENOMEM; >> + >> + ctrl->dev = &pdev->dev; >> + nand_hw_control_init(&ctrl->controller); >> + >> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); >> + ctrl->regs = devm_ioremap_resource(&pdev->dev, res); >> + if (IS_ERR(ctrl->regs)) >> + return PTR_ERR(ctrl->regs); >> + >> + rst = devm_reset_control_get(&pdev->dev, "nand"); >> + if (IS_ERR(rst)) >> + return PTR_ERR(rst); >> + >> + ctrl->clk = devm_clk_get(&pdev->dev, "nand"); >> + if (IS_ERR(ctrl->clk)) >> + return PTR_ERR(ctrl->clk); >> + >> + err = clk_prepare_enable(ctrl->clk); >> + if (err) >> + return err; >> + >> + err = reset_control_reset(rst); >> + if (err) >> + goto err_disable_clk; >> + >> + reg = HWSTATUS_RDSTATUS_MASK(1) | HWSTATUS_RDSTATUS_VALUE(0) | >> + HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | >> + HWSTATUS_RBSY_VALUE(NAND_STATUS_READY); >> + writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD); >> + writel_relaxed(reg, ctrl->regs + HWSTATUS_MASK); >> + >> + init_completion(&ctrl->command_complete); >> + init_completion(&ctrl->dma_complete); >> + >> + /* clear interrupts */ >> + reg = readl_relaxed(ctrl->regs + ISR); >> + writel_relaxed(reg, ctrl->regs + ISR); >> + >> + irq = platform_get_irq(pdev, 0); >> + err = devm_request_irq(&pdev->dev, irq, tegra_nand_irq, 0, >> + dev_name(&pdev->dev), ctrl); >> + if (err) >> + goto err_disable_clk; >> + >> + writel_relaxed(DMA_CTRL_IS_DONE, ctrl->regs + DMA_CTRL); >> + >> + /* enable interrupts */ >> + reg = IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE; >> + writel_relaxed(reg, ctrl->regs + IER); >> + >> + /* reset config */ >> + writel_relaxed(0, ctrl->regs + CFG); >> + >> + err = tegra_nand_chips_init(ctrl->dev, ctrl); >> + if (err) >> + goto err_disable_clk; >> + >> + platform_set_drvdata(pdev, ctrl); >> + >> + return 0; >> + >> +err_disable_clk: >> + clk_disable_unprepare(ctrl->clk); >> + return err; >> +} >> + >> +static int tegra_nand_remove(struct platform_device *pdev) >> +{ >> + struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); >> + >> + nand_release(nand_to_mtd(ctrl->chip)); >> + >> + clk_disable_unprepare(ctrl->clk); >> + >> + return 0; >> +} >> + >> +static const struct of_device_id tegra_nand_of_match[] = { >> + { .compatible = "nvidia,tegra20-nand" }, >> + { /* sentinel */ } >> +}; >> + >> +static struct platform_driver tegra_nand_driver = { >> + .driver = { >> + .name = "tegra-nand", >> + .of_match_table = tegra_nand_of_match, >> + }, >> + .probe = tegra_nand_probe, >> + .remove = tegra_nand_remove, >> +}; >> +module_platform_driver(tegra_nand_driver); >> + >> +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); >> +MODULE_AUTHOR("Thierry Reding <thierry.reding@xxxxxxxxxx>"); >> +MODULE_AUTHOR("Lucas Stach <dev@xxxxxxxxxx>"); >> +MODULE_AUTHOR("Stefan Agner <stefan@xxxxxxxx>"); >> +MODULE_LICENSE("GPL v2"); >> +MODULE_DEVICE_TABLE(of, tegra_nand_of_match); >> -- To unsubscribe from this list: send the line "unsubscribe linux-tegra" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html