On Saturday, 9 June 2018 00:51:01 MSK Stefan Agner wrote: > On 01.06.2018 11:20, Dmitry Osipenko wrote: > > On 01.06.2018 01:16, Stefan Agner wrote: > >> Add support for the NAND flash controller found on NVIDIA > >> Tegra 2 SoCs. This implementation does not make use of the > >> command queue feature. Regular operations/data transfers are > >> done in PIO mode. Page read/writes with hardware ECC make > >> use of the DMA for data transfer. > >> > >> Signed-off-by: Lucas Stach <dev@xxxxxxxxxx> > >> Signed-off-by: Stefan Agner <stefan@xxxxxxxx> > >> --- > >> > >> MAINTAINERS | 7 + > >> drivers/mtd/nand/raw/Kconfig | 6 + > >> drivers/mtd/nand/raw/Makefile | 1 + > >> drivers/mtd/nand/raw/tegra_nand.c | 1143 +++++++++++++++++++++++++++++ > >> 4 files changed, 1157 insertions(+) > >> create mode 100644 drivers/mtd/nand/raw/tegra_nand.c > >> > >> diff --git a/MAINTAINERS b/MAINTAINERS > >> index 58b9861ccf99..c2e5571c85d4 100644 > >> --- a/MAINTAINERS > >> +++ b/MAINTAINERS > >> @@ -13844,6 +13844,13 @@ M: Laxman Dewangan <ldewangan@xxxxxxxxxx> > >> > >> S: Supported > >> F: drivers/input/keyboard/tegra-kbc.c > >> > >> +TEGRA NAND DRIVER > >> +M: Stefan Agner <stefan@xxxxxxxx> > >> +M: Lucas Stach <dev@xxxxxxxxxx> > >> +S: Maintained > >> +F: Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt > >> +F: drivers/mtd/nand/raw/tegra_nand.c > >> + > >> > >> TEGRA PWM DRIVER > >> M: Thierry Reding <thierry.reding@xxxxxxxxx> > >> S: Supported > >> > >> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > >> index 19a2b283fbbe..e9093f52371e 100644 > >> --- a/drivers/mtd/nand/raw/Kconfig > >> +++ b/drivers/mtd/nand/raw/Kconfig > >> @@ -534,4 +534,10 @@ config MTD_NAND_MTK > >> > >> Enables support for NAND controller on MTK SoCs. > >> This controller is found on mt27xx, mt81xx, mt65xx SoCs. > >> > >> +config MTD_NAND_TEGRA > >> + tristate "Support for NAND controller on NVIDIA Tegra" > >> + depends on ARCH_TEGRA || COMPILE_TEST > >> + help > >> + Enables support for NAND flash controller on NVIDIA Tegra SoC. > >> + > >> > >> endif # MTD_NAND > >> > >> diff --git a/drivers/mtd/nand/raw/Makefile > >> b/drivers/mtd/nand/raw/Makefile > >> index 165b7ef9e9a1..d5a5f9832b88 100644 > >> --- a/drivers/mtd/nand/raw/Makefile > >> +++ b/drivers/mtd/nand/raw/Makefile > >> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += > >> hisi504_nand.o > >> > >> obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ > >> obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o > >> obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o > >> > >> +obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o > >> > >> nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o > >> nand-objs += nand_amd.o > >> > >> diff --git a/drivers/mtd/nand/raw/tegra_nand.c > >> b/drivers/mtd/nand/raw/tegra_nand.c new file mode 100644 > >> index 000000000000..e9664f2938a3 > >> --- /dev/null > >> +++ b/drivers/mtd/nand/raw/tegra_nand.c > >> @@ -0,0 +1,1143 @@ > >> +// SPDX-License-Identifier: GPL-2.0 > >> +/* > >> + * Copyright (C) 2018 Stefan Agner <stefan@xxxxxxxx> > >> + * Copyright (C) 2014-2015 Lucas Stach <dev@xxxxxxxxxx> > >> + * Copyright (C) 2012 Avionic Design GmbH > >> + */ > >> + > >> +#include <linux/clk.h> > >> +#include <linux/completion.h> > >> +#include <linux/delay.h> > >> +#include <linux/dma-mapping.h> > >> +#include <linux/err.h> > >> +#include <linux/gpio/consumer.h> > >> +#include <linux/interrupt.h> > >> +#include <linux/io.h> > >> +#include <linux/module.h> > >> +#include <linux/mtd/partitions.h> > >> +#include <linux/mtd/rawnand.h> > >> +#include <linux/of.h> > >> +#include <linux/platform_device.h> > >> +#include <linux/reset.h> > >> + > >> +#define CMD 0x00 > >> +#define CMD_GO BIT(31) > >> +#define CMD_CLE BIT(30) > >> +#define CMD_ALE BIT(29) > >> +#define CMD_PIO BIT(28) > >> +#define CMD_TX BIT(27) > >> +#define CMD_RX BIT(26) > >> +#define CMD_SEC_CMD BIT(25) > >> +#define CMD_AFT_DAT BIT(24) > >> +#define CMD_TRANS_SIZE(x) (((x - 1) & 0xf) << 20) > >> +#define CMD_A_VALID BIT(19) > >> +#define CMD_B_VALID BIT(18) > >> +#define CMD_RD_STATUS_CHK BIT(17) > >> +#define CMD_RBSY_CHK BIT(16) > >> +#define CMD_CE(x) BIT((8 + ((x) & 0x7))) > >> +#define CMD_CLE_SIZE(x) (((x - 1) & 0x3) << 4) > >> +#define CMD_ALE_SIZE(x) (((x - 1) & 0xf) << 0) > >> + > >> +#define STATUS 0x04 > >> + > >> +#define ISR 0x08 > >> +#define ISR_CORRFAIL_ERR BIT(24) > >> +#define ISR_UND BIT(7) > >> +#define ISR_OVR BIT(6) > >> +#define ISR_CMD_DONE BIT(5) > >> +#define ISR_ECC_ERR BIT(4) > >> + > >> +#define IER 0x0c > >> +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) > >> +#define IER_UND BIT(7) > >> +#define IER_OVR BIT(6) > >> +#define IER_CMD_DONE BIT(5) > >> +#define IER_ECC_ERR BIT(4) > >> +#define IER_GIE BIT(0) > >> + > >> +#define CFG 0x10 > >> +#define CFG_HW_ECC BIT(31) > >> +#define CFG_ECC_SEL BIT(30) > >> +#define CFG_ERR_COR BIT(29) > >> +#define CFG_PIPE_EN BIT(28) > >> +#define CFG_TVAL_4 (0 << 24) > >> +#define CFG_TVAL_6 (1 << 24) > >> +#define CFG_TVAL_8 (2 << 24) > >> +#define CFG_SKIP_SPARE BIT(23) > >> +#define CFG_BUS_WIDTH_16 BIT(21) > >> +#define CFG_COM_BSY BIT(20) > >> +#define CFG_PS_256 (0 << 16) > >> +#define CFG_PS_512 (1 << 16) > >> +#define CFG_PS_1024 (2 << 16) > >> +#define CFG_PS_2048 (3 << 16) > >> +#define CFG_PS_4096 (4 << 16) > >> +#define CFG_SKIP_SPARE_SIZE_4 (0 << 14) > >> +#define CFG_SKIP_SPARE_SIZE_8 (1 << 14) > >> +#define CFG_SKIP_SPARE_SIZE_12 (2 << 14) > >> +#define CFG_SKIP_SPARE_SIZE_16 (3 << 14) > >> +#define CFG_TAG_BYTE_SIZE(x) ((x) & 0xff) > >> + > >> +#define TIMING_1 0x14 > >> +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) > >> +#define TIMING_TWB(x) (((x) & 0xf) << 24) > >> +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) > >> +#define TIMING_TWHR(x) (((x) & 0xf) << 16) > >> +#define TIMING_TCS(x) (((x) & 0x3) << 14) > >> +#define TIMING_TWH(x) (((x) & 0x3) << 12) > >> +#define TIMING_TWP(x) (((x) & 0xf) << 8) > >> +#define TIMING_TRH(x) (((x) & 0x3) << 4) > >> +#define TIMING_TRP(x) (((x) & 0xf) << 0) > >> + > >> +#define RESP 0x18 > >> + > >> +#define TIMING_2 0x1c > >> +#define TIMING_TADL(x) ((x) & 0xf) > >> + > >> +#define CMD_1 0x20 > >> +#define CMD_2 0x24 > >> +#define ADDR_1 0x28 > >> +#define ADDR_2 0x2c > >> + > >> +#define DMA_CTRL 0x30 > >> +#define DMA_CTRL_GO BIT(31) > >> +#define DMA_CTRL_IN (0 << 30) > >> +#define DMA_CTRL_OUT BIT(30) > >> +#define DMA_CTRL_PERF_EN BIT(29) > >> +#define DMA_CTRL_IE_DONE BIT(28) > >> +#define DMA_CTRL_REUSE BIT(27) > >> +#define DMA_CTRL_BURST_1 (2 << 24) > >> +#define DMA_CTRL_BURST_4 (3 << 24) > >> +#define DMA_CTRL_BURST_8 (4 << 24) > >> +#define DMA_CTRL_BURST_16 (5 << 24) > >> +#define DMA_CTRL_IS_DONE BIT(20) > >> +#define DMA_CTRL_EN_A BIT(2) > >> +#define DMA_CTRL_EN_B BIT(1) > >> + > >> +#define DMA_CFG_A 0x34 > >> +#define DMA_CFG_B 0x38 > >> + > >> +#define FIFO_CTRL 0x3c > >> +#define FIFO_CTRL_CLR_ALL BIT(3) > >> + > >> +#define DATA_PTR 0x40 > >> +#define TAG_PTR 0x44 > >> +#define ECC_PTR 0x48 > >> + > >> +#define DEC_STATUS 0x4c > >> +#define DEC_STATUS_A_ECC_FAIL BIT(1) > >> +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 > >> +#define DEC_STATUS_ERR_COUNT_SHIFT 16 > >> + > >> +#define HWSTATUS_CMD 0x50 > >> +#define HWSTATUS_MASK 0x54 > >> +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) > >> +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) > >> +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) > >> +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) > >> + > >> +#define BCH_CONFIG 0xcc > >> +#define BCH_ENABLE BIT(0) > >> +#define BCH_TVAL_4 (0 << 4) > >> +#define BCH_TVAL_8 (1 << 4) > >> +#define BCH_TVAL_14 (2 << 4) > >> +#define BCH_TVAL_16 (3 << 4) > >> + > >> +#define DEC_STAT_RESULT 0xd0 > >> +#define DEC_STAT_BUF 0xd4 > >> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 > >> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 > >> +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 > >> +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 > >> +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 > >> +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 > >> + > >> +#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) > >> + > >> +#define SKIP_SPARE_BYTES 4 > >> +#define BITS_PER_STEP_RS 18 > >> +#define BITS_PER_STEP_BCH 13 > >> + > >> +struct tegra_nand_controller { > >> + struct nand_hw_control controller; > >> + void __iomem *regs; > >> + struct clk *clk; > >> + struct device *dev; > >> + struct completion command_complete; > >> + struct completion dma_complete; > >> + bool last_read_error; > >> + int cur_chip; > >> + struct nand_chip *chip; > >> +}; > >> + > >> +struct tegra_nand_chip { > >> + struct nand_chip chip; > >> + struct gpio_desc *wp_gpio; > >> + struct mtd_oob_region tag; > >> +}; > >> + > >> +static inline struct tegra_nand_controller *to_tegra_ctrl( > >> + struct nand_hw_control *hw_ctrl) > >> +{ > >> + return container_of(hw_ctrl, struct tegra_nand_controller, controller); > >> +} > >> + > >> +static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip > >> *chip) +{ > >> + return container_of(chip, struct tegra_nand_chip, chip); > >> +} > >> + > >> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int > >> section, > >> + struct mtd_oob_region *oobregion) > >> +{ > >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * > >> chip->ecc.strength, > >> + BITS_PER_BYTE); > >> + > >> + if (section > 0) > >> + return -ERANGE; > >> + > >> + oobregion->offset = SKIP_SPARE_BYTES; > >> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); > >> + > >> + return 0; > >> +} > >> + > >> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int > >> section, > >> + struct mtd_oob_region *oobregion) > >> +{ > >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * > >> chip->ecc.strength, > >> + BITS_PER_BYTE); > >> + > >> + if (section > 0) > >> + return -ERANGE; > >> + > >> + oobregion->offset = SKIP_SPARE_BYTES + > >> + round_up(bytes_per_step * chip->ecc.steps, 4); > >> + oobregion->length = mtd->oobsize - oobregion->offset; > >> + > >> + return 0; > >> +} > >> + > >> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { > >> + .ecc = tegra_nand_ooblayout_rs_ecc, > >> + .free = tegra_nand_ooblayout_rs_free, > >> +}; > >> + > >> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int > >> section, > >> + struct mtd_oob_region *oobregion) > >> +{ > >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * > >> chip->ecc.strength, > >> + BITS_PER_BYTE); > >> + > >> + if (section > 0) > >> + return -ERANGE; > >> + > >> + oobregion->offset = SKIP_SPARE_BYTES; > >> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); > >> + > >> + return 0; > >> +} > >> + > >> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int > >> section, + struct mtd_oob_region *oobregion) > >> +{ > >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * > >> chip->ecc.strength, > >> + BITS_PER_BYTE); > >> + > >> + if (section > 0) > >> + return -ERANGE; > >> + > >> + oobregion->offset = SKIP_SPARE_BYTES + > >> + round_up(bytes_per_step * chip->ecc.steps, 4); > >> + oobregion->length = mtd->oobsize - oobregion->offset; > >> + > >> + return 0; > >> +} > >> + > >> +/* > >> + * Layout with tag bytes is > >> + * > >> + * > >> ------------------------------------------------------------------------ > >> -- + * | main area | skip bytes | tag bytes | > >> parity | .. | + * > >> ------------------------------------------------------------------------ > >> -- + * > >> + * If not tag bytes are written, parity moves right after skip bytes! > >> + */ > >> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { > >> + .ecc = tegra_nand_ooblayout_bch_ecc, > >> + .free = tegra_nand_ooblayout_bch_free, > >> +}; > >> + > >> +static irqreturn_t tegra_nand_irq(int irq, void *data) > >> +{ > >> + struct tegra_nand_controller *ctrl = data; > >> + u32 isr, dma; > >> + > >> + isr = readl_relaxed(ctrl->regs + ISR); > >> + dma = readl_relaxed(ctrl->regs + DMA_CTRL); > >> + dev_dbg(ctrl->dev, "isr %08x\n", isr); > >> + > >> + if (!isr && !(dma & DMA_CTRL_IS_DONE)) > >> + return IRQ_NONE; > >> + > >> + /* > >> + * The bit name is somewhat missleading: This is also set when > >> + * HW ECC was successful. The data sheet states: > >> + * Correctable OR Un-correctable errors occurred in the DMA transfer... > >> + */ > >> + if (isr & ISR_CORRFAIL_ERR) > >> + ctrl->last_read_error = true; > >> + > >> + if (isr & ISR_CMD_DONE) > >> + complete(&ctrl->command_complete); > >> + > >> + if (isr & ISR_UND) > >> + dev_err(ctrl->dev, "FIFO underrun\n"); > >> + > >> + if (isr & ISR_OVR) > >> + dev_err(ctrl->dev, "FIFO overrun\n"); > >> + > >> + /* handle DMA interrupts */ > >> + if (dma & DMA_CTRL_IS_DONE) { > >> + writel_relaxed(dma, ctrl->regs + DMA_CTRL); > >> + complete(&ctrl->dma_complete); > >> + } > >> + > >> + /* clear interrupts */ > >> + writel_relaxed(isr, ctrl->regs + ISR); > >> + > >> + return IRQ_HANDLED; > >> +} > >> + > >> +static const char * const tegra_nand_reg_names[] = { > >> + "COMMAND", > >> + "STATUS", > >> + "ISR", > >> + "IER", > >> + "CONFIG", > >> + "TIMING", > >> + NULL, > >> + "TIMING2", > >> + "CMD_REG1", > >> + "CMD_REG2", > >> + "ADDR_REG1", > >> + "ADDR_REG2", > >> + "DMA_MST_CTRL", > >> + "DMA_CFG_A", > >> + "DMA_CFG_B", > >> + "FIFO_CTRL", > >> +}; > >> + > >> +static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) > >> +{ > >> + u32 reg; > >> + int i; > >> + > >> + dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); > >> + for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { > >> + const char *reg_name = tegra_nand_reg_names[i]; > >> + > >> + if (!reg_name) > >> + continue; > >> + > >> + reg = readl_relaxed(ctrl->regs + (i * 4)); > >> + dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); > >> + } > >> +} > >> + > >> +static int tegra_nand_cmd(struct nand_chip *chip, > >> + const struct nand_subop *subop) > >> +{ > >> + const struct nand_op_instr *instr; > >> + const struct nand_op_instr *instr_data_in = NULL; > >> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); > >> + unsigned int op_id, size = 0, offset = 0; > >> + bool first_cmd = true; > >> + u32 reg, cmd = 0; > >> + int ret; > >> + > >> + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > >> + unsigned int naddrs, i; > >> + const u8 *addrs; > >> + u32 addr1 = 0, addr2 = 0; > >> + > >> + instr = &subop->instrs[op_id]; > >> + > >> + switch (instr->type) { > >> + case NAND_OP_CMD_INSTR: > >> + if (first_cmd) { > >> + cmd |= CMD_CLE; > >> + writel_relaxed(instr->ctx.cmd.opcode, > >> + ctrl->regs + CMD_1); > >> + } else { > >> + cmd |= CMD_SEC_CMD; > >> + writel_relaxed(instr->ctx.cmd.opcode, > >> + ctrl->regs + CMD_2); > >> + } > >> + first_cmd = false; > >> + break; > >> + case NAND_OP_ADDR_INSTR: > >> + offset = nand_subop_get_addr_start_off(subop, op_id); > >> + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); > >> + addrs = &instr->ctx.addr.addrs[offset]; > >> + > >> + cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs); > >> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) > >> + addr1 |= *addrs++ << (BITS_PER_BYTE * i); > >> + naddrs -= i; > >> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) > >> + addr2 |= *addrs++ << (BITS_PER_BYTE * i); > >> + writel_relaxed(addr1, ctrl->regs + ADDR_1); > >> + writel_relaxed(addr2, ctrl->regs + ADDR_2); > >> + break; > >> + > >> + case NAND_OP_DATA_IN_INSTR: > >> + size = nand_subop_get_data_len(subop, op_id); > >> + offset = nand_subop_get_data_start_off(subop, op_id); > >> + > >> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_RX | > >> + CMD_A_VALID; > >> + > >> + instr_data_in = instr; > >> + break; > >> + > >> + case NAND_OP_DATA_OUT_INSTR: > >> + size = nand_subop_get_data_len(subop, op_id); > >> + offset = nand_subop_get_data_start_off(subop, op_id); > >> + > >> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_TX | > >> + CMD_A_VALID; > >> + > >> + memcpy(®, instr->ctx.data.buf.out + offset, size); > >> + writel_relaxed(reg, ctrl->regs + RESP); > >> + > >> + break; > >> + case NAND_OP_WAITRDY_INSTR: > >> + cmd |= CMD_RBSY_CHK; > >> + break; > >> + > >> + } > >> + } > >> + > >> + cmd |= CMD_GO | CMD_CE(ctrl->cur_chip); > >> + writel_relaxed(cmd, ctrl->regs + CMD); > >> + ret = wait_for_completion_timeout(&ctrl->command_complete, > >> + msecs_to_jiffies(500)); > >> + if (!ret) { > >> + dev_err(ctrl->dev, "CMD timeout\n"); > >> + tegra_nand_dump_reg(ctrl); > >> + return -ETIMEDOUT; > >> + } > > > > - wait_for_completion_timeout() could fail > > Not according to: > https://elixir.bootlin.com/linux/latest/source/kernel/sched/completion.c#L14 > 0 https://www.kernel.org/doc/Documentation/scheduler/completion.txt > > Afaik, only the _interruptible variant can fail. Okay. > Btw, maybe we should use the _io variant? Looks like the _io variant is something specific to block/FS subsys and shouldn't be used by the drivers. > > - HW shall be reset > > - completion shall be re-inited because IRQ could fire just after the > > completion timeout > > > > I'd write it something like this: > > > > #define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) > > > > #define HWSTATUS_MASK (HWSTATUS_RDSTATUS_MASK(1) | \ > > > > HWSTATUS_RDSTATUS_VALUE(0) | \ > > HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ > > HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) > > > > #define HW_TIMEOUT 500 > > > > void tegra_nand_controller_reset(struct tegra_nand_controller *ctrl) > > { > > > > int err; > > > > disable_irq(ctrl->irq); > > > > err = reset_control_reset(ctrl->rst); > > if (err) { > > > > dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); > > msleep(HW_TIMEOUT); > > > > } > > > > writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD); > > writel_relaxed(HWSTATUS_MASK, ctrl->regs + HWSTATUS_MASK); > > writel_relaxed(INT_MASK, ctrl->regs + ISR); > > If we do a controller reset, there is much more state than that which > needs to be restored. A lot of it is not readily available currently > (timing, ECC settings...) > > That seems a lot of work for a code path I do not intend to ever use :-) Are you sure that resetting HW resets the timing and other registers configuration? Reset implementation is HW-specific, like for example in a case of a video decoder the registers state is re-intialized on HW reset, but registers configuration is untouched in a case of resetting GPU. I'd suggest to check whether NAND controller resetting affects the HW configuration. -- To unsubscribe from this list: send the line "unsubscribe linux-tegra" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html