Smithsonian / USGS Weekly Volcanic Activity Report 29 January-4 February 2020

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



5-5-5-5-5-5-5-5-5-5-5-5-5-5


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

29 January-4 February 2020



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Kuchinoerabujima, Ryukyu Islands (Japan)  | Rincon de
la Vieja, Costa Rica  | Taal, Luzon (Philippines)



Ongoing Activity: Aira, Kyushu (Japan)  | Asosan, Kyushu (Japan)  |
Bulusan, Luzon (Philippines)  | Dukono, Halmahera (Indonesia)  | Ebeko,
Paramushir Island (Russia)  | Ibu, Halmahera (Indonesia)  | Kadovar, Papua
New Guinea  | Karangetang, Siau Island (Indonesia)  | Kerinci, Indonesia  |
Klyuchevskoy, Central Kamchatka (Russia)  | Nevados de Chillan, Chile  |
Sangay, Ecuador  | Semeru, Eastern Java (Indonesia)  | Sheveluch, Central
Kamchatka (Russia)  | Shishaldin, Fox Islands (USA)  | Ulawun, New Britain
(Papua New Guinea)  | White Island, North Island (New Zealand)





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Kuchinoerabujima  | Ryukyu Islands (Japan)  | 30.443°N, 130.217°E  | Summit
elev. 657 m



JMA reported that at 0521 on 3 February an eruption at Kuchinoerabujimaâ??s
Shindake Crater produced an ash plume that rose 7 km above the crater rim,
based on satellite images, and ejected material 600 m away from the crater.
A pyroclastic flow traveled about 900 m SW, the first one recorded since 29
January 2019. Ashfall was confirmed in the northern part of neighboring
Yakushima Island (a large amount in Miyanoura, 32 km ESE) and southern
Tanegashima. According to a news article the eruption caused one flight to
be diverted and one to be cancelled. The Alert Level remained at 3 (the
middle level on a scale of 1-5).



Geologic Summary. A group of young stratovolcanoes forms the eastern end of
the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu
Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones
were erupted from south to north, respectively, forming a composite cone
with multiple craters. The youngest cone, centrally-located Shindake,
formed after the NW side of Furudake was breached by an explosion. All
historical eruptions have occurred from Shindake, although a lava flow from
the S flank of Furudake that reached the coast has a very fresh morphology.
Frequent explosive eruptions have taken place from Shindake since 1840; the
largest of these was in December 1933. Several villages on the 4 x 12 km
island are located within a few kilometers of the active crater and have
suffered damage from eruptions.



Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/;

Stuff
https://www.stuff.co.nz/travel/travel-troubles/119252451/volcanic-eruption-forces-air-nz-flight-from-auckland-to-japan-to-divert-to-guam





Rincon de la Vieja  | Costa Rica  | 10.83°N, 85.324°W  | Summit elev. 1916 m



OVSICORI-UNA reported that at 1213 on 31 January a phreatic eruption at
Rincón de la Vieja ejected material onto the N flanks and generated a plume
that rose 2 km above the crater rim. Lahars descended rivers on the N flank
and reached populated areas 7-10 km downriver around 40 minutes after the
eruption.



Geologic Summary. Rincón de la Vieja, the largest volcano in NW Costa Rica,
is a remote volcanic complex in the Guanacaste Range. The volcano consists
of an elongated, arcuate NW-SE-trending ridge that was constructed within
the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed
on the south side. Sometimes known as the "Colossus of Guanacaste," it has
an estimated volume of 130 km3 and contains at least nine major eruptive
centers. Activity has migrated to the SE, where the youngest-looking
craters are located. The twin cone of 1916-m-high Santa María volcano, the
highest peak of the complex, is located at the eastern end of a smaller,
5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing
the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major
magmatic eruption. All subsequent eruptions, including numerous historical
eruptions possibly dating back to the 16th century, have been from the
prominent active crater containing a 500-m-wide acid lake located ENE of
Von Seebach crater.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Taal  | Luzon (Philippines)  | 14.002°N, 120.993°E  | Summit elev. 311 m



PHIVOLCS reported that whitish steam plumes rose as high as 800 m above
Taalâ??s main vent during 29 January-4 February and drifted SW. Sulfur
dioxide emissions ranged from values below detectable limits to a high of
231 tonnes per day (on 3 February). According to the Disaster Response
Operations Monitoring and Information Center (DROMIC) there were a total of
23,915 people in 152 evacuation centers, and an additional 224,188 people
were staying at other locations as of 3 February. The Alert Level remained
at 3 (on a scale of 0-5) and PHIVOLCS recommended no entry onto Volcano
Island and Taal Lake, nor into towns W of the island within a 7-km radius.



Geologic Summary. Taal is one of the most active volcanoes in the
Philippines and has produced some of its most powerful historical
eruptions. Though not topographically prominent, its prehistorical
eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km
Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2
surface lies only 3 m above sea level. The maximum depth of the lake is 160
m, and several eruptive centers lie submerged beneath the lake. The
5-km-wide Volcano Island in north-central Lake Taal is the location of all
historical eruptions. The island is composed of coalescing small
stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in
area during historical time. Powerful pyroclastic flows and surges from
historical eruptions have caused many fatalities.



Sources: Philippine Institute of Volcanology and Seismology (PHIVOLCS)
http://www.phivolcs.dost.gov.ph/;

Disaster Response Operations Monitoring and Information Center (DROMIC)
https://dromic.dswd.gov.ph/





Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 27 January-3 February there were 26 explosions and
33 non-explosive eruptive events detected by the Minamidake Crater (at Aira
Calderaâ??s Sakurajima volcano) seismic network. Ash plumes rose as high as
2.2 km above the crater rim and material was ejected 700-1,300 m away from
the crater. Crater incandescence was visible at night. The sulfur dioxide
emission rate was very high at 4,700 tons/day on 31 January. The Alert
Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that eruptive activity at Asosan was recorded during 27
January-3 February. Plumes rose 1.1 km above the crater rim and caused
ashfall in areas downwind. The sulfur dioxide emission rate was high,
ranging from 1,900 to 3,400 tons per day during 28-29 and 31 January and 3
February. The Alert Level remained at 2 (on a scale of 1-5).



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/;

Tokyo Volcanic Ash Advisory Center (VAAC)
http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html





Bulusan  | Luzon (Philippines)  | 12.769°N, 124.056°E  | Summit elev. 1535 m



PHIVOLCS lowered the Alert Level for Bulusan to 0 (on a scale of 0-5) on 25
January, noting that activity at the volcano was at baseline levels.
Specifically, sulfur dioxide flux had been below detectable levels since
2018, the frequency of volcanic earthquakes had been at baseline levels
(0-2 earthquakes/day) since May 2019, and overall ground deformation data
indicated that there was no pressurization from subsurface magma. Weak gas
emissions from hydrothermal activity continued. PHIVOLCS reminded the
public of the 4-km-radius Permanent Danger Zone (PDZ).



Geologic Summary. Luzon's southernmost volcano, Bulusan, was constructed
along the rim of the 11-km-diameter dacitic-to-rhyolitic Irosin caldera,
which was formed about 36,000 years ago. It lies at the SE end of the Bicol
volcanic arc occupying the peninsula of the same name that forms the
elongated SE tip of Luzon. A broad, flat moat is located below the
topographically prominent SW rim of Irosin caldera; the NE rim is buried by
the andesitic complex. Bulusan is flanked by several other large
intracaldera lava domes and cones, including the prominent Mount Jormajan
lava dome on the SW flank and Sharp Peak to the NE. The summit is
unvegetated and contains a 300-m-wide, 50-m-deep crater. Three small
craters are located on the SE flank. Many moderate explosive eruptions have
been recorded since the mid-19th century.



Source: Philippine Institute of Volcanology and Seismology (PHIVOLCS)
http://www.phivolcs.dost.gov.ph/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, the Darwin VAAC reported that
during 29 January-4 February ash plumes from Dukono rose to 2.1 km (7,000
ft) a.s.l. and drifted SW, S, and SE. The Alert Level remained at 2 (on a
scale of 1-4), and the public was warned to remain outside of the 2-km
exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 24-31 January that sent ash plumes up to
4 km (13,100 ft) a.s.l.; ash plumes drifted E. The Aviation Color Code
remained at Orange (the second highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Ibu  | Halmahera (Indonesia)  | 1.488°N, 127.63°E  | Summit elev. 1325 m



PVMBG reported that during 29 January-2 February white-to-gray plumes rose
200-800 m above Ibuâ??s summit; plumes drifted S on 2 February. Weather
clouds prevented visual observations during 3-4 February. The Alert Level
remained at 2 (on a scale of 1-4), and the public was warned to stay at
least 2 km away from the active crater, and 3.5 km away on the N side.



Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along
the NW coast of Halmahera Island has large nested summit craters. The inner
crater, 1 km wide and 400 m deep, contained several small crater lakes
through much of historical time. The outer crater, 1.2 km wide, is breached
on the north side, creating a steep-walled valley. A large parasitic cone
is located ENE of the summit. A smaller one to the WSW has fed a lava flow
down the W flank. A group of maars is located below the N and W flanks.
Only a few eruptions have been recorded in historical time, the first a
small explosive eruption from the summit crater in 1911. An eruption
producing a lava dome that eventually covered much of the floor of the
inner summit crater began in December 1998.



Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/;

Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Kadovar  | Papua New Guinea  | 3.608°S, 144.588°E  | Summit elev. 365 m



Based on satellite data, the Darwin VAAC reported that on 2 February an ash
plume from Kadovar rose to an altitude of 1.5 km (5,000 ft) a.s.l. and
drifted ESE.



Geologic Summary. The 2-km-wide island of Kadovar is the emergent summit of
a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten
Islands, and lies off the coast of New Guinea, about 25 km N of the mouth
of the Sepik River. Prior to an eruption that began in 2018, a lava dome
formed the high point of the andesitic volcano, filling an arcuate
landslide scarp open to the south; submarine debris-avalanche deposits
occur in that direction. Thick lava flows with columnar jointing forms low
cliffs along the coast. The youthful island lacks fringing or offshore
reefs. A period of heightened thermal phenomena took place in 1976. An
eruption began in January 2018 that included lava effusion from vents at
the summit and at the E coast.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Karangetang  | Siau Island (Indonesia)  | 2.781°N, 125.407°E  | Summit
elev. 1797 m



PVMBG reported that during 27 January-2 February lava continued to effuse
from Karangetangâ??s Main Crater (S), traveling as far as 1.8 km down the
Nanitu, Pangi, and Sense drainages on the SW and W flanks. Sometimes dense
white plumes rose 200 m above the summit. Incandescence from both summit
craters was visible at night. The Alert Level remained at 2 (on a scale of
1-4).



Geologic Summary. Karangetang (Api Siau) volcano lies at the northern end
of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi
island. The stratovolcano contains five summit craters along a N-S line. It
is one of Indonesia's most active volcanoes, with more than 40 eruptions
recorded since 1675 and many additional small eruptions that were not
documented in the historical record (Catalog of Active Volcanoes of the
World: Neumann van Padang, 1951). Twentieth-century eruptions have included
frequent explosive activity sometimes accompanied by pyroclastic flows and
lahars. Lava dome growth has occurred in the summit craters; collapse of
lava flow fronts have produced pyroclastic flows.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Kerinci  | Indonesia  | 1.697°S, 101.264°E  | Summit elev. 3800 m



PVMBG reported that during 1-3 February brown ash plumes rose 150-300 m
above Kerinciâ??s summit; ash plumes drifted NE on 1 February. The Alert
Level remained at 2 (on a scale of 1-4), and the public was warned to
remain outside of the 3-km exclusion zone.



Geologic Summary. Gunung Kerinci in central Sumatra forms Indonesia's
highest volcano and is one of the most active in Sumatra. It is capped by
an unvegetated young summit cone that was constructed NE of an older crater
remnant. There is a deep 600-m-wide summit crater often partially filled by
a small crater lake that lies on the NE crater floor, opposite the SW-rim
summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above
surrounding plains and is elongated in a N-S direction. Frequently active,
Kerinci has been the source of numerous moderate explosive eruptions since
its first recorded eruption in 1838.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that Strombolian activity at Klyuchevskoy was visible during
24-31 January, and a thermal anomaly was identified in satellite images
during 27-28 and 30 January. Vulcanian activity was recorded on 30 January;
explosions generated ash plumes that rose to 5.5 km (18,000 ft) a.s.l. and
drifted 282 km E. The Aviation Color Code remained at Orange.



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Nevados de Chillan  | Chile  | 36.868°S, 71.378°W  | Summit elev. 3180 m



SERNAGEOMIN reported that during 28 January-4 February white gas plumes
from Nevados de Chillánâ??s Nicanor Crater rose as high as 900 m above the
rim and drifted E, ESE, and SE. Minor explosions during 28-29 January
ejected incandescent blocks that were visible at night. At 1356 on 30
January an explosion generated a gas-and-ash plume that rose 3.4 km above
the crater rim; parts of the plume collapsed, generating pyroclastic flows
that traveled NE and SE. Two thermal anomalies were identified in satellite
images, one from vent CE4 (November 2019) and the second from a new vent
named CE5, formed 60 m NW of the center of CE4. There had been no
advancement of the lava flows (L1, L2, L3, and L4) since 24 November 2019.
The number of long-period earthquakes and tremor associated with explosions
both considerably decreased after December 2019. The volcano Alert Level
remained at Orange, the second highest level on a four-color scale. ONEMI
maintained an Alert Level Yellow (the middle level on a three-color scale)
for the communities of Pinto, Coihueco, and San Fabián, and stated that the
public should stay at least 3 km away from the crater on the SW flank and 5
km away on the ENE flank.



Geologic Summary. The compound volcano of Nevados de Chillán is one of the
most active of the Central Andes. Three late-Pleistocene to Holocene
stratovolcanoes were constructed along a NNW-SSE line within three nested
Pleistocene calderas, which produced ignimbrite sheets extending more than
100 km into the Central Depression of Chile. The largest stratovolcano,
dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW
end of the group. Volcán Viejo (Volcán Chillán), which was the main active
vent during the 17th-19th centuries, occupies the SE end. The new Volcán
Nuevo lava-dome complex formed between 1906 and 1945 between the two
volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau
dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and
eventually exceeded its height.



Source: Servicio Nacional de Geología y Minería (SERNAGEOMIN)
http://www.sernageomin.cl/





Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m



IG reported a high level of activity at Sangay during 27 January-4
February, though weather clouds often prevented visual confirmation. Ash,
steam, and gas plumes rose 880-1,200 m above the summit and drifted W and
SW during 27-29 January. Minor ashfall was reported in Púngala and in
several Chimborazo province communities during 27-28 February. A
pyroclastic flow descended the SE flank on 28 January, reaching the Volcán
River and causing secondary lahars in the river. Incandescent blocks rolled
down the SE flank on 29 January. Minor ashfall was reported in the province
of Chimborazo (W), particularly in the towns of Cebadas (35 km WNW) and
Palmira (46 km W). On 30 January residents in the town of Alao (20 km NW)
reported that vegetation was covered with fine white ash. An ash emission
rose 570 m above the summit and drifted W on 31 January. Ashfall was
reported in Macas (42 km SE) the next day. Gas-and-steam plumes rose up to
200 m and drifted W on 2 February. Incandescent blocks rolled down the SE
flank on 3 February.



Geologic Summary. The isolated Sangay volcano, located east of the Andean
crest, is the southernmost of Ecuador's volcanoes and its most active. The
steep-sided, glacier-covered, dominantly andesitic volcano grew within
horseshoe-shaped calderas of two previous edifices, which were destroyed by
collapse to the east, producing large debris avalanches that reached the
Amazonian lowlands. The modern edifice dates back to at least 14,000 years
ago. It towers above the tropical jungle on the east side; on the other
sides flat plains of ash have been sculpted by heavy rains into
steep-walled canyons up to 600 m deep. The earliest report of a historical
eruption was in 1628. More or less continuous eruptions were reported from
1728 until 1916, and again from 1934 to the present. The almost constant
activity has caused frequent changes to the morphology of the summit crater
complex.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
http://www.igepn.edu.ec/





Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev.
3657 m



PVMBG reported that ash plumes from Semeru rose 400-500 m above the crater
rim and drifted N on 30 January as well as 2 and 4 February. The Alert
Level remained at 2 (on a scale from 1-4); the public was warned to stay 1
km away from the active crater and 4 km away on the SSE flank.



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 23-24 and 27-30 January. The Aviation Color Code
remained at Orange (the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Shishaldin  | Fox Islands (USA)  | 54.756°N, 163.97°W  | Summit elev. 2857 m



AVO reported that seismic activity at Shishaldin remained above background
levels during 29 January-4 February. Weakly- to moderately-elevated surface
temperatures were sometimes identified in satellite images. The Aviation
Color Code remained at Orange and the Volcano Alert Level remained at Watch.



Geologic Summary. The beautifully symmetrical Shishaldin is the highest and
one of the most active volcanoes of the Aleutian Islands. The
glacier-covered volcano is the westernmost of three large stratovolcanoes
along an E-W line in the eastern half of Unimak Island. The Aleuts named
the volcano Sisquk, meaning "mountain which points the way when I am lost."
A steam plume often rises from its small summit crater. Constructed atop an
older glacially dissected volcano, it is largely basaltic in composition.
Remnants of an older ancestral volcano are exposed on the W and NE sides at
1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW
flank, which is blanketed by massive aa lava flows. Frequent explosive
activity, primarily consisting of Strombolian ash eruptions from the small
summit crater, but sometimes producing lava flows, has been recorded since
the 18th century.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Ulawun  | New Britain (Papua New Guinea)  | 5.05°S, 151.33°E  | Summit
elev. 2334 m



RVO reported that during 17-31 January white vapor plumes rose from
Ulawunâ??s Main Crater and weak, diffuse white vapor rose from the WSW flank
fissure. Lahars were detected mid-month. Seismic activity was low with RSAM
values below 200 units. The Alert Level remained at Stage 1.



Geologic Summary. The symmetrical basaltic-to-andesitic Ulawun
stratovolcano is the highest volcano of the Bismarck arc, and one of Papua
New Guinea's most frequently active. The volcano, also known as the Father,
rises above the N coast of the island of New Britain across a low saddle NE
of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A
prominent E-W escarpment on the south may be the result of large-scale
slumping. Satellitic cones occupy the NW and E flanks. A steep-walled
valley cuts the NW side, and a flank lava-flow complex lies to the south of
this valley. Historical eruptions date back to the beginning of the 18th
century. Twentieth-century eruptions were mildly explosive until 1967, but
after 1970 several larger eruptions produced lava flows and basaltic
pyroclastic flows, greatly modifying the summit crater.



Source: Rabaul Volcano Observatory (RVO)





White Island  | North Island (New Zealand)  | 37.52°S, 177.18°E  | Summit
elev. 294 m



On 4 February GeoNet reported that White island remained at an elevated
state of unrest. Temperatures at the vent area remained very hot at more
than 550-570 degrees Celsius. Gas emissions measured during an overflight
on 30 January had decreased compared to the previous week but remained at
high levels. No changes to the vent area, the receding lake, or the area of
lava extrusion were visually apparent. Continuing movement of the
back-crater wall W of the 1914 landslide deposits was identified in
satellite images, though not noted during the overflight. According to the
New Zealand Police another person died as a result from the eruption,
bringing the total number of deaths to 21. The Volcanic Alert Level
remained at 2 and the Aviation Color Code remained at Yellow.



Geologic Summary. The uninhabited White Island, also known as Whakaari in
the Maori language, is the 2 x 2.4 km emergent summit of a 16 x 18 km
submarine volcano in the Bay of Plenty about 50 km offshore of North
Island. The island consists of two overlapping andesitic-to-dacitic
stratovolcanoes. The summit crater appears to be breached to the SE,
because the shoreline corresponds to the level of several notches in the SE
crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome,
lie 5 km NW. Descriptions of eruptions since 1826 have included
intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions;
activity there also forms a prominent part of Maori legends. Formation of
many new vents during the 19th and 20th centuries has produced rapid
changes in crater floor topography. Collapse of the crater wall in 1914
produced a debris avalanche that buried buildings and workers at a
sulfur-mining project. Explosive activity in December 2019 took place while
tourists were present, resulting in many fatalities.



Sources: GeoNet http://www.geonet.org.nz/; New Zealand Police
https://www.police.govt.nz/




5-5-5-5-5-5-5-5-5-5-5-5-5-5


==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - http://pdx.edu/

GVP - http://www.volcano.si.edu/

IAVCEI - https://www.iavceivolcano.org/



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.



==============================================================

------------------------------

End of Volcano Digest - 3 Feb 2020 to 5 Feb 2020 (#2020-16)
***********************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux