Smithsonian / USGS Weekly Volcanic Activity Report 27 March-2 April 2019

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6

From: "Kuhn, Sally" <KUHNS@xxxxxx>

6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6


Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Popocatepetl, Mexico  | Tengger Caldera, Eastern Java
(Indonesia)



Ongoing Activity: Agung, Bali (Indonesia)  | Aira, Kyushu (Japan)  |
Dukono, Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  |
Fuego, Guatemala  | Ibu, Halmahera (Indonesia)  | Karymsky, Eastern
Kamchatka (Russia)  | Kerinci, Indonesia  | Krakatau, Indonesia  | Manam,
Papua New Guinea  | Merapi, Central Java (Indonesia)  | Pacaya, Guatemala
| Rincon de la Vieja, Costa Rica  | Sabancaya, Peru  | Sangay, Ecuador  |
Santa Maria, Guatemala  | Sheveluch, Central Kamchatka (Russia)  |
Turrialba, Costa Rica





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Popocatepetl  | Mexico  | 19.023°N, 98.622°W  | Summit elev. 5393 m



CENAPRED reported that each day during 26 March-2 April there were 27-200
steam-and-gas emissions from Popocatépetl, some of which contained ash. An
explosion at 1923 on 26 March produced an ash plume that rose 3 km above
the crater rim and drifted NE, and ejected incandescent fragments 2 km onto
the flanks setting fire to pastures on the N and NE flanks. Ashfall was
reported in municipalities of Puebla including Santa Cruz, Atlixco (23 km
SE), San Pedro, San Andrés Cholula (35 km E), Santa Isabel (45 km ESE), and
San Pedro Benito Juárez (10-12 km SE), and in municipalities of Morelos
including Hueyapan (17 km SSW) and Tetela del Volcán (20 km SW). An
explosion at 0650 on 28 March generated an ash plume that rose 2.5 km and
drifted SE, and ejected fragments 1 km onto the flanks. Continuous
gas-and-ash emissions were visible between 0538 and 0748. CENAPRED raised
the Alert Level to Yellow, Phase Three (middle level on a three-color
scale). An ash plume from an explosion at 1948 rose 3 km and drifted SE.
Incandescent fragments were ejected 2 km onto the flanks. After that event
gas-and-ash plumes rose from the crater until 2010. A period of Strombolian
activity began at 0247 on 30 March and lasted for 14 minutes, generating
ash plumes that rose 800 m and drifted SE. Incandescent ejecta fell onto
the flanks 300 m below the crater rim. During an overflight scientists
observed that the diameter of the inner crater had increased to 350 m, and
that the crater floor was 250-300 m deep.



Geologic Summary. Volcán Popocatépetl, whose name is the Aztec word for
smoking mountain, rises 70 km SE of Mexico City to form North America's
2nd-highest volcano. The glacier-clad stratovolcano contains a
steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is
modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier
volcano. At least three previous major cones were destroyed by
gravitational failure during the Pleistocene, producing massive
debris-avalanche deposits covering broad areas to the south. The modern
volcano was constructed south of the late-Pleistocene to Holocene El Fraile
cone. Three major Plinian eruptions, the most recent of which took place
about 800 CE, have occurred since the mid-Holocene, accompanied by
pyroclastic flows and voluminous lahars that swept basins below the
volcano. Frequent historical eruptions, first recorded in Aztec codices,
have occurred since Pre-Columbian time.



Source: Centro Nacional de Prevencion de Desastres (CENAPRED)
http://www.cenapred.unam.mx/es/





Tengger Caldera  | Eastern Java (Indonesia)  | 7.942°S, 112.95°E  | Summit
elev. 2329 m



The Darwin VAAC reported that during 27-28 March ash plumes from Tengger
Calderaâ??s Bromo cone rose to altitudes of 3.4-4 km (11,000-13,000 ft)
a.s.l. and drifted W, NW, N, and NE, based on webcam images, satellite
data, and notices from PVMBG. The Alert Level remained at 2 (on a scale of
1-4), and visitors were warned to stay outside of a 1-km radius of the
crater.



Geologic Summary. The 16-km-wide Tengger caldera is located at the northern
end of a volcanic massif extending from Semeru volcano. The massive
volcanic complex dates back to about 820,000 years ago and consists of five
overlapping stratovolcanoes, each truncated by a caldera. Lava domes,
pyroclastic cones, and a maar occupy the flanks of the massif. The
Ngadisari caldera at the NE end of the complex formed about 150,000 years
ago and is now drained through the Sapikerep valley. The most recent of the
calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the
complex, which formed incrementally during the late Pleistocene and early
Holocene. An overlapping cluster of post-caldera cones was constructed on
the floor of the Sandsea caldera within the past several thousand years.
The youngest of these is Bromo, one of Java's most active and most
frequently visited volcanoes.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Ongoing Activity





Agung  | Bali (Indonesia)  | 8.343°S, 115.508°E  | Summit elev. 2997 m



At 1825 on 28 March an ash plume from Agung rose above the crater to an
altitude of 5.5 km (18,000 ft) a.s.l. and drifted NW according to PVMBG and
the Darwin VAAC. A thermal anomaly was visible in satellite data. Ashfall
was reported in nearby villages. The Alert Level remained at 3 (on a scale
of 1-4) with the exclusion zone set at a 4-km radius.



Geologic Summary. Symmetrical Agung stratovolcano, Bali's highest and most
sacred mountain, towers over the eastern end of the island. The volcano,
whose name means "Paramount," rises above the SE caldera rim of neighboring
Batur volcano, and the northern and southern flanks extend to the coast.
The summit area extends 1.5 km E-W, with the high point on the W and a
steep-walled 800-m-wide crater on the E. The Pawon cone is located low on
the SE flank. Only a few eruptions dating back to the early 19th century
have been recorded in historical time. The 1963-64 eruption, one of the
largest in the 20th century, produced voluminous ashfall along with
devastating pyroclastic flows and lahars that caused extensive damage and
many fatalities.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 25 March-1 April five events at Minamidake crater
(at Aira Calderaâ??s Sakurajima volcano) produced plumes that rose as high as
1.6 m above the crater rim. Crater incandescence was occasionally visible.
The Alert Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, and notices from PVMBG, the Darwin
VAAC reported that during 26 March-2 April ash plumes from Dukono rose to
altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted E and SE. The
Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to
remain outside of the 2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 22, 24-25, and 27-28 March that sent ash
plumes up to 4.2 km (13,800 ft) a.s.l. Ash fell in Severo-Kurilsk during
24-25 and 27 March. The Aviation Color Code remained at Orange (the second
highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Fuego  | Guatemala  | 14.473°N, 90.88°W  | Summit elev. 3763 m



INSIVUMEH reported that during 28-29 March there were 14-20 explosion per
hour recorded at Fuego, with ash plumes rising as high as 1.1 km above the
summit and drifting 15-25 km W, SW, and S. Shock waves vibrated nearby
structures. Incandescent material was ejected 200-300 m high and caused
avalanches of material that traveled down the the Seca (W), Ceniza (SSW),
Taniluyá (SW), Trinidad (S), and Las Lajas (SE) drainages. Ashfall was
reported in areas downwind including Panimache I (8 km SW), Morelia (8 km
SW), Santa Sofia (12 km SE), La Rochela, and San Andrés Osuna. A special
bulletin issued on 29 March stated that activity has increased with ash
plumes from explosions rising as high as 1.3 km and drifting 30 km in
multiple directions. Avalanches of material traveled down the Las Lajas,
Honda and Seca drainages.



A special bulletin was issued on 31 March describing another increase in
activity with the number of explosions ranging from 14 to 32 per hour. Ash
plumes rose as high as 1.3 km and drifted W, SW, and S. The explosions
vibrated local residences. A lava flow that had emerged in the early
morning hours advanced 800 m in the Seca drainage. On 1 April there were
13-16 explosions recorded per hour. Ash plumes rose almost 1 km and drifted
10-15 km S, SE, and SW. Shock waves continued to vibrate residential
structures. Incandescent material was ejected 100-200 m high and caused
avalanches of material that occasionally traveled long distances down Seca,
Taniluyá, Ceniza, Trinidad, Las Lajas, and Honda ravines, reaching
vegetation. Ashfall as reported in areas downwind including Panimache I,
Morelia, Palo Verde Estate, Santa Sofia, La Rochela, and San Andrés Osuna.



Geologic Summary. Volcán Fuego, one of Central America's most active
volcanoes, is one of three large stratovolcanoes overlooking Guatemala's
former capital, Antigua. The scarp of an older edifice, Meseta, lies
between 3763-m-high Fuego and its twin volcano to the north, Acatenango.
Construction of Meseta dates back to about 230,000 years and continued
until the late Pleistocene or early Holocene. Collapse of Meseta may have
produced the massive Escuintla debris-avalanche deposit, which extends
about 50 km onto the Pacific coastal plain. Growth of the modern Fuego
volcano followed, continuing the southward migration of volcanism that
began at Acatenango. In contrast to the mostly andesitic Acatenango,
eruptions at Fuego have become more mafic with time, and most historical
activity has produced basaltic rocks. Frequent vigorous historical
eruptions have been recorded since the onset of the Spanish era in 1524,
and have produced major ashfalls, along with occasional pyroclastic flows
and lava flows.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Ibu  | Halmahera (Indonesia)  | 1.488°N, 127.63°E  | Summit elev. 1325 m



The Darwin VAAC reported that on 28 March multiple ash plumes from Ibu were
identified in satellite images drifting SE at an altitude of 2.1 km (7,000
ft) a.s.l. The Alert Level remained at 2 (on a scale of 1-4), and the
public was warned to stay at least 2 km away from the active crater, and
3.5 km away on the N side.



Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along
the NW coast of Halmahera Island has large nested summit craters. The inner
crater, 1 km wide and 400 m deep, contained several small crater lakes
through much of historical time. The outer crater, 1.2 km wide, is breached
on the north side, creating a steep-walled valley. A large parasitic cone
is located ENE of the summit. A smaller one to the WSW has fed a lava flow
down the W flank. A group of maars is located below the N and W flanks.
Only a few eruptions have been recorded in historical time, the first a
small explosive eruption from the summit crater in 1911. An eruption
producing a lava dome that eventually covered much of the floor of the
inner summit crater began in December 1998.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit
elev. 1513 m



KVERT reported that ash plumes from Karymsky were visible in satellite
images during 26-27 March drifting 190 km E at altitudes of 2-3 km
(6,600-9,800 ft) a.s.l. The Aviation Color Code remained at Orange (the
second highest level on a four-color scale).



Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern
volcanic zone, is a symmetrical stratovolcano constructed within a
5-km-wide caldera that formed during the early Holocene. The caldera cuts
the south side of the Pleistocene Dvor volcano and is located outside the
north margin of the large mid-Pleistocene Polovinka caldera, which contains
the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding
Karymsky eruptions originated beneath Akademia Nauk caldera, located
immediately south. The caldera enclosing Karymsky formed about 7600-7700
radiocarbon years ago; construction of the stratovolcano began about 2000
years later. The latest eruptive period began about 500 years ago,
following a 2300-year quiescence. Much of the cone is mantled by lava flows
less than 200 years old. Historical eruptions have been vulcanian or
vulcanian-strombolian with moderate explosive activity and occasional lava
flows from the summit crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Kerinci  | Indonesia  | 1.697°S, 101.264°E  | Summit elev. 3800 m



PVMBG reported that at 1051, 1456, and 1511 on 30 March brownish or grayish
ash plumes from Kerinci rose 500-600 m above the crater rim and drifted NE.
The Alert Level remained at 2 (on a scale of 1-4), and tourists were warned
to remain outside of the 3-km exclusion zone.



Geologic Summary. Gunung Kerinci in central Sumatra forms Indonesia's
highest volcano and is one of the most active in Sumatra. It is capped by
an unvegetated young summit cone that was constructed NE of an older crater
remnant. There is a deep 600-m-wide summit crater often partially filled by
a small crater lake that lies on the NE crater floor, opposite the SW-rim
summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above
surrounding plains and is elongated in a N-S direction. Frequently active,
Kerinci has been the source of numerous moderate explosive eruptions since
its first recorded eruption in 1838.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Krakatau  | Indonesia  | 6.102°S, 105.423°E  | Summit elev. 813 m



PVMBG reported that at 1325 on 30 March an ash plume from Anak Krakatau
rose 1 km a.s.l. and drifted NE. Three events were detected on 31 March (at
0035, 1219, and 1745), although no ash plumes were visible. The Alert Level
remained at 3 (on a scale of 1-4), and residents were warned to remain
outside of the 5-km radius hazard zone from the crater.



Geologic Summary. The renowned volcano Krakatau (frequently misstated as
Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of
the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a
7-km-wide caldera. Remnants of this ancestral volcano are preserved in
Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan
volcanoes were formed, coalescing to create the pre-1883 Krakatau Island.
Caldera collapse during the catastrophic 1883 eruption destroyed Danan and
Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd
largest in Indonesia during historical time, caused more than 36,000
fatalities, most as a result of devastating tsunamis that swept the
adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km
across the Sunda Strait and reached the Sumatra coast. After a quiescence
of less than a half century, the post-collapse cone of Anak Krakatau (Child
of Krakatau) was constructed within the 1883 caldera at a point between the
former cones of Danan and Perbuwatan. Anak Krakatau has been the site of
frequent eruptions since 1927.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Manam  | Papua New Guinea  | 4.08°S, 145.037°E  | Summit elev. 1807 m



The Darwin VAAC reported that on 29 March ash plumes from Manam rose to
altitudes of 2.4-3 km (8,000-10,000 ft) a.s.l. and drifted E, NE, and N
based on satellite data and weather models. A thermal anomaly was also
visible.



Geologic Summary. The 10-km-wide island of Manam, lying 13 km off the
northern coast of mainland Papua New Guinea, is one of the country's most
active volcanoes. Four large radial valleys extend from the unvegetated
summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its
lower flanks. These "avalanche valleys" channel lava flows and pyroclastic
avalanches that have sometimes reached the coast. Five small satellitic
centers are located near the island's shoreline on the northern, southern,
and western sides. Two summit craters are present; both are active,
although most historical eruptions have originated from the southern
crater, concentrating eruptive products during much of the past century
into the SE valley. Frequent historical eruptions, typically of
mild-to-moderate scale, have been recorded since 1616. Occasional larger
eruptions have produced pyroclastic flows and lava flows that reached
flat-lying coastal areas and entered the sea, sometimes impacting populated
areas.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Merapi  | Central Java (Indonesia)  | 7.54°S, 110.446°E  | Summit elev.
2910 m



PVMBG reported that by 21 March Merapiâ??s lava dome had grown to an
estimated volume of 472,000 cubic meters, based on analyses of drone
footage, and remained relatively unchanged during 22-28 March; most of the
extruded lava fell into the upper parts of the Gendol River drainage on the
SE flank. As many as eight block-and-ash flows traveled up to 1,500 m down
the Gendol drainage. The Alert Level remained at 2 (on a scale of 1-4), and
residents were warned to remain outside of the 3-km exclusion zone.



Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in
one of the world's most densely populated areas and dominates the landscape
immediately north of the major city of Yogyakarta. It is the youngest and
southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth
of Old Merapi during the Pleistocene ended with major edifice collapse
perhaps about 2000 years ago, leaving a large arcuate scarp cutting the
eroded older Batulawang volcano. Subsequently growth of the steep-sided
Young Merapi edifice, its upper part unvegetated due to frequent eruptive
activity, began SW of the earlier collapse scarp. Pyroclastic flows and
lahars accompanying growth and collapse of the steep-sided active summit
lava dome have devastated cultivated lands on the western-to-southern
flanks and caused many fatalities during historical time.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Pacaya  | Guatemala  | 14.382°N, 90.601°W  | Summit elev. 2569 m



INSIVUMEH reported that during 28 March-1 April Strombolian explosions at
Pacayaâ??s Mackenney Crater ejected material as high as 75 m above the crater
rim. A lava flow traveled down the N flank, producing minor avalanches of
material from the lava-flow front.



Geologic Summary. Eruptions from Pacaya, one of Guatemala's most active
volcanoes, are frequently visible from Guatemala City, the nation's
capital. This complex basaltic volcano was constructed just outside the
southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A
cluster of dacitic lava domes occupies the southern caldera floor. The
post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro
Grande stratovolcanoes and the currently active Mackenney stratovolcano.
Collapse of Pacaya Viejo between 600 and 1500 years ago produced a
debris-avalanche deposit that extends 25 km onto the Pacific coastal plain
and left an arcuate somma rim inside which the modern Pacaya volcano
(Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on
the NW somma rim and was last active in the 19th century. During the past
several decades, activity has consisted of frequent strombolian eruptions
with intermittent lava flow extrusion that has partially filled in the
caldera moat and armored the flanks of Mackenney cone, punctuated by
occasional larger explosive eruptions that partially destroy the summit of
the growing young stratovolcano.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Rincon de la Vieja  | Costa Rica  | 10.83°N, 85.324°W  | Summit elev. 1916 m



OVSICORI-UNA reported that a two-minute-long phreatic eruption at Rincón de
la Vieja was recorded at 0802 on 1 April and produced a plume that rose 600
m above the crater rim. The report noted that a previous event had occurred
at 2043 on 29 March. Intermittent tremor was recorded in between the two
events.



Geologic Summary. Rincón de la Vieja, the largest volcano in NW Costa Rica,
is a remote volcanic complex in the Guanacaste Range. The volcano consists
of an elongated, arcuate NW-SE-trending ridge that was constructed within
the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed
on the south side. Sometimes known as the "Colossus of Guanacaste," it has
an estimated volume of 130 km3 and contains at least nine major eruptive
centers. Activity has migrated to the SE, where the youngest-looking
craters are located. The twin cone of 1916-m-high Santa María volcano, the
highest peak of the complex, is located at the eastern end of a smaller,
5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing
the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major
magmatic eruption. All subsequent eruptions, including numerous historical
eruptions possibly dating back to the 16th century, have been from the
prominent active crater containing a 500-m-wide acid lake located ENE of
Von Seebach crater.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m



Instituto Geofísico del Perú (IGP) and Instituto Geológico Minero y
Metalúrgico (INGEMMET) reported that an average of 43 explosions per day
occurred at Sabancaya during 25-31 March. Long-period seismic events were
recorded, and hybrid earthquakes were infrequent and of low magnitude.
Gas-and-ash plumes rose as high as 1.5 km above the crater rim and drifted
30 km NE, SE, S, and SW. MIROVA detected one thermal anomaly, and on 31
March the sulfur-dioxide gas flux was high at 3,000 tons per day. The
report noted that the public should not approach the crater within a 12-km
radius.



Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of
Hualca Hualca volcanoes, is the youngest of these volcanic centers and the
only one to have erupted in historical time. The oldest of the three,
Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene
age. The name Sabancaya (meaning "tongue of fire" in the Quechua language)
first appeared in records in 1595 CE, suggesting activity prior to that
date. Holocene activity has consisted of Plinian eruptions followed by
emission of voluminous andesitic and dacitic lava flows, which form an
extensive apron around the volcano on all sides but the south. Records of
historical eruptions date back to 1750.



Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET)
http://www.ingemmet.gob.pe/;

Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/





Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m



IG reported renewed activity at Sangay on 26 March based on satellite data
and a Washington VAAC notice of ash. According to the VAAC a small ash
plume rose less than 1 km above the crater rim and drifted SW. Seismicity
had decreased to an average of three events per day after the last eruption
ended on 7 December 2018, and then to 1 event per day during the past
month. There was no seismic record of the 26 March event due to technical
difficulties.



Geologic Summary. The isolated Sangay volcano, located east of the Andean
crest, is the southernmost of Ecuador's volcanoes and its most active. The
steep-sided, glacier-covered, dominantly andesitic volcano grew within
horseshoe-shaped calderas of two previous edifices, which were destroyed by
collapse to the east, producing large debris avalanches that reached the
Amazonian lowlands. The modern edifice dates back to at least 14,000 years
ago. It towers above the tropical jungle on the east side; on the other
sides flat plains of ash have been sculpted by heavy rains into
steep-walled canyons up to 600 m deep. The earliest report of a historical
eruption was in 1628. More or less continuous eruptions were reported from
1728 until 1916, and again from 1934 to the present. The almost constant
activity has caused frequent changes to the morphology of the summit crater
complex.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
http://www.igepn.edu.ec/





Santa Maria  | Guatemala  | 14.757°N, 91.552°W  | Summit elev. 3745 m



INSIVUMEH reported that during 28 March-1 April explosions at Santa María's
Santiaguito lava-dome complex generated ash plumes that rose 700 m and
drifted E and SW, causing ashfall on the flanks. Avalanches of material
descended the E, SE, and S flanks of the lava dome.



Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of
the most prominent of a chain of large stratovolcanoes that rises
dramatically above the Pacific coastal plain of Guatemala. The
stratovolcano has a sharp-topped, conical profile that is cut on the SW
flank by a 1.5-km-wide crater. The oval-shaped crater extends from just
below the summit to the lower flank and was formed during a catastrophic
eruption in 1902. The renowned Plinian eruption of 1902 that devastated
much of SW Guatemala followed a long repose period after construction of
the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito
lava-dome complex has been growing at the base of the 1902 crater since
1922. Compound dome growth at Santiaguito has occurred episodically from
four westward-younging vents, the most recent of which is Caliente. Dome
growth has been accompanied by almost continuous minor explosions, with
periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluchâ??s lava dome was
identified daily in satellite images during 22-28 March. An ash plume rose
to 5 km (16,400 ft) a.s.l. and drifted about 80 km S on 25 March. The
Aviation Color Code remained at Orange (the second highest level on a
four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m



OVSICORI-UNA reported that gas emissions at Turrialba significantly
decreased on 30 March. An eruption recorded at 0735 on 31 March was
followed by passive emissions with a low concentration of magmatic gases at
least through 1 April. Seismicity continued to be dominated by
low-frequency events.



Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene
volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located
across a broad saddle NE of Irazú volcano overlooking the city of Cartago.
The massive edifice covers an area of 500 km2. Three well-defined craters
occur at the upper SW end of a broad 800 x 2200 m summit depression that is
breached to the NE. Most activity originated from the summit vent complex,
but two pyroclastic cones are located on the SW flank. Five major explosive
eruptions have occurred during the past 3500 years. A series of explosive
eruptions during the 19th century were sometimes accompanied by pyroclastic
flows. Fumarolic activity continues at the central and SW summit craters.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/

==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/
PSU - http://pdx.edu/
GVP - http://www.volcano.si.edu/
IAVCEI - http://www.iavcei.org/

To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to:
volcano@xxxxxxx.  Please do not send attachments.

==============================================================

------------------------------

End of Volcano Digest - 1 Apr 2019 to 3 Apr 2019 (#2019-30)
***********************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux