VOLCANO: Smithsonian / USGS Weekly Volcanic Activity Report 13-19 June 2018

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



***************************************************************************************************************
From: "Kuhn, Sally" <KUHNS@xxxxxx> 
Subject: Smithsonian / USGS Weekly Volcanic Activity Report 13-19 June 2018  
***************************************************************************************************************



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm

 

 

New Activity/Unrest: Fernandina, Ecuador  | Fuego, Guatemala  | Great Sitkin, Andreanof Islands (USA)  | Ibu, Halmahera (Indonesia)

 

Ongoing Activity: Agung, Bali (Indonesia)  | Aira, Kyushu (Japan)  | Cleveland, Chuginadak Island (USA)  | Dukono, Halmahera (Indonesia)  | Karymsky, Eastern Kamchatka (Russia)  | Kilauea, Hawaiian Islands (USA)  | Klyuchevskoy, Central Kamchatka (Russia)  | Langila, New Britain (Papua New Guinea)  | Pacaya, Guatemala  | Sabancaya, Peru  | Santa Maria, Guatemala  | Sheveluch, Central Kamchatka (Russia)  | Sinabung, Indonesia  | Yasur, Vanuatu

 

 

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

 

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.

 

 

 

New Activity/Unrest

 

 

Fernandina  | Ecuador  | 0.37°S, 91.55°W  | Summit elev. 1476 m

 

IG reported that a seismic swarm at Fernandina began at 0837 on 16 June. Nine earthquakes stronger than M 2.5 were detected with the largest event, a M 4.1, located NE of the island at a depth of 4 km. An eruption that began between 1100 and 1115 was confirmed by guides on a passing boat passing, and by thermal anomalies identified in satellite images. The eruption occurred from a radial fissure on the NNE flank, producing gas plumes with low ash content that rose 2-3 km and drifted more than 250 km WNW. Lava flows reached the sea within a few hours. After two days of intense eruptive activity, tremor levels decreased significantly, thermal anomalies decreased (though continued to remain intense), and a significant drop in sulfur dioxide emissions was recorded.

 

Geologic Summary. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

 

Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/

 

 

Fuego  | Guatemala  | 14.473°N, 90.88°W  | Summit elev. 3763 m

 

During 13-19 June INSIVUMEH and CONRED reported that strong lahars at Fuego were often hot, steaming, and had a sulfur odor, and were generated from heavy rains and the recent accumulation of pyroclastic-flow deposits from the 3 June events. Lahars descended the Cenizas (SSW), Las Lajas (SE), Mineral, Santa Teresa (W), El Gobernador, and Taniluyá (SW) drainages. They were 20-45 m wide, as deep as 3 m, and often carried blocks up to 3 m in diameter, tree trunks, and branches. On 14 June lahars disrupted communication in the communities of Morelia (9 km SW), Panimaché I and II (8 km SW), Santa Sofia (12 km SW), El Porvenir (8 km ENE), Yucales, and Sangré de Cristo (8 km WSW), all of Yepocapa (8 km N), and Chimaltenango (21 km NNE), requiring assistance from the Army. Water levels in the Pantaleón River began to rapidly rise in the afternoon of 17 June.

 

During 16-19 June as many as seven explosions per hour produced ash plumes that rose as high as 1.2 km above the crater and drifted as far as 15 km W, SW, and S. Some explosions were heard in areas within a 10-km radius. Avalanches of material descended the Santa Teresa, Las Lajas, and Cenizas drainages during 17-18 June, producing ash plumes, and ashfall in Panimache, Morelia, Sangre de Cristo, and finca Palo Verde. According to CONRED, as of 19 June, the number of people confirmed to have died due to the 3 June pyroclastic flows remained at 110, and 197 more were missing. In addition, 12,823 people had been evacuated.

 

Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

 

Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/;

Coordinadora Nacional para la Reducción de Desastres (CONRED) http://conred.gob.gt/

 

 

Great Sitkin  | Andreanof Islands (USA)  | 52.076°N, 176.13°W  | Summit elev. 1740 m

 

AVO reported that satellite images captured after the short-lived steam explosion at Great Sitkin on 10 June indicated minor changes in the summit crater, characterized by possible new fumaroles in the N part of the main crater and slightly more vigorous steaming at pre-existing fumaroles. Seismicity declined to background levels during 15-16 June.

 

Geologic Summary. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

 

Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/

 

 

Ibu  | Halmahera (Indonesia)  | 1.488°N, 127.63°E  | Summit elev. 1325 m

 

PVMBG reported that during 14-19 June white-to-gray plumes rose 200-600 m above Ibu’s crater rim. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

 

Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

 

Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/

 

 

Ongoing Activity

 

 

Agung  | Bali (Indonesia)  | 8.343°S, 115.508°E  | Summit elev. 2997 m

 

PVMBG reported that at 1105 on 13 June an event at Agung produced a dense ash plume that rose around 2 km above the crater rim and drifted SW and W. Based on analysis of the seismic data, the event lasted two minutes and 12 seconds. Another event was detected at 2115 on 15 June, though foggy conditions prevented estimations of the ash plume height; ash fell in areas W, including in Puregai (7 km W). The Alert Level remained at 3 (on a scale of 1-4) and the 4-km-radius exclusion zone was unchanged.

 

Geologic Summary. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

 

Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/

 

 

Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m

 

JMA reported that there were eight events at Minamidake crater (at Aira Caldera’s Sakurajima volcano) during 11-15 June, with ash plumes rising as high as 1.6 km above the crater rim. An explosive event at 0719 on 16 June 2018 generated an ash plume that rose 4.7 km (the first time that a plume rose over 4 km since 2 May 2017) and ejecting tephra as far as 1.1 km. A pyroclastic flow traveled down the SW flank. The last pyroclastic flow originated at the Showa Crater on 1 April 2018. The Alert Level remained at 3 (on a 5-level scale).

 

Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

 

Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/

 

 

Cleveland  | Chuginadak Island (USA)  | 52.825°N, 169.944°W  | Summit elev. 1730 m

 

AVO reported that low-level unrest at Cleveland continued during 13-19 June. Elevated surface temperatures were evident in satellite data on days when the area was cloud-free. Nothing unusual was observed in seismic or pressure sensor data. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory.

 

Geologic Summary. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

 

Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/

 

 

Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m

 

Based on PVMBG observations and satellite data, the Darwin VAAC reported that during 13-17 June ash plumes from Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted in multiple directions.

 

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml

 

 

Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit elev. 1513 m

 

KVERT reported that a thermal anomaly over Karymsky was last identified in satellite images on 20 May. The Aviation Color Code was lowered to Yellow (the second lowest level on a four-color scale) on 15 June.

 

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev. 1222 m

 

HVO reported that the eruption at Kilauea’s Lower East Rift Zone (LERZ) and at Overlook Crater within Halema`uma`u Crater continued during 13-19 June. Lava fountaining and spatter was concentrated at Fissure 8, feeding lava flows that spread through Leilani Estates and Lanipuna Gardens subdivisions, and built out the coastline where the fast-moving flow entered the ocean in the area of the former Kapoho Bay. Minor lava activity at Fissures 16/18 was occasionally noted, and spattering was visible at Fissure 6 on 16 June. Hawai‘i County Civil Defense reported that by 17 June a total of 533 homes had been destroyed due to lava flows.

 

Inward slumping of the crater rim and walls of Halema`uma`u continued, adjusting from the withdrawal of magma and subsidence of the summit area. Steam plumes rose from areas in the crater as well as from circumferential cracks adjacent to the crater. Summit explosions occurred daily, producing ash plumes that rose as high as 3 km (10,000 ft) a.s.l. On 18 June residents reported feeling a large earthquake at 0613 and hearing roaring. The event was followed by an ash plume rising to 1.5 km (5,000 ft) a.s.l.

 

Fountaining at Fissure 8 was stable; lava fountains rose as high 60 m from a 52-m-high spatter cone. Pele's hair and other volcanic glass from the fountaining fell within Leilani Estates. The fountains continued to feed the fast-moving lava flow that traveled NE, and then SE around Kapoho Crater, and into the ocean. Occasional overflows sent small flows down the sides of the channel. Lava entering the ocean built a lava delta that by 16 June was just over 130 hectares in area. A plume of laze rose from the entry points. An area of thermal upwelling in the ocean out from the visible lava-delta front was visible, suggesting lava flowing on the ocean floor.

 

Geologic Summary. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

 

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) https://volcanoes.usgs.gov/observatories/hvo/

 

 

Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit elev. 4754 m

 

KVERT reported that a weak thermal anomaly over Klyuchevskoy was identified in satellite images during 13-14 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

 

Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Langila  | New Britain (Papua New Guinea)  | 5.525°S, 148.42°E  | Summit elev. 1330 m

 

Based on analyses of satellite imagery and wind model data, the Darwin VAAC reported that on 17 June an ash plume from Langila rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted W.

 

Geologic Summary. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml

 

 

Pacaya  | Guatemala  | 14.382°N, 90.601°W  | Summit elev. 2569 m

 

INSIVUMEH and CONRED reported that during 13 and 16-18 June Strombolian explosions at Pacaya’s Mackenney Crater ejected material as high as 50 m above the crater rim. An ash plume rose 3.5 km above the summit and drifted 10 km N and NE.

 

Geologic Summary. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

 

Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/;

Coordinadora Nacional para la Reducción de Desastres (CONRED) http://conred.gob.gt/

 

 

Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m

 

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosions at Sabancaya averaged 19 per day during 11-17 June. Hybrid earthquakes were infrequent and low magnitude. Gas-and-ash plumes rose as high as 1.4 km above the crater rim and drifted 30 km S and SE. The MIROVA system detected two thermal anomalies, and on 14 June the sulfur dioxide gas flux was high at 4,300 tons/day. The report noted that the public should not approach the crater within a 12-km radius.

 

Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

 

Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.ingemmet.gob.pe/;

Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/

 

 

Santa Maria  | Guatemala  | 14.757°N, 91.552°W  | Summit elev. 3745 m

 

INSIVUMEH reported that on 13 June lahars descended Nimá I drainage on the S flank of Santa María's Santiaguito lava-dome complex. The lahars were 15-18 m wide and 1-2 m deep, and carried blocks 1.5 m in diameter and tree branches. CONRED noted that a Yellow Alert Level was declared for Quetzaltenango (18 km WNW) on 16 June due to continuing rains and an increased threat of lahars. Weak explosions during 16-18 June generated diffuse ash plumes that rose 700 m above the complex and drifted SW and W.

 

Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of the most prominent of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The 3772-m-high stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank and was formed during a catastrophic eruption in 1902. The renowned plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

 

Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/

 

 

Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit elev. 3283 m

 

KVERT reported that a weak thermal anomaly over Sheveluch was identified in satellite images during 13-14 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

 

Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Sinabung  | Indonesia  | 3.17°N, 98.392°E  | Summit elev. 2460 m

 

PVMBG reported that at 0700 on 15 June an event at Sinabung produced an ash plume that rose at least 500 m above the crater rim and drifted ESE. The Alert Level remained at 4 (on a scale of 1-4), with a general exclusion zone of 3 km and extensions of 7 km on the SSE sector, 6 km in the ESE sector, and 4 km in the NNE sector.

 

Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

 

Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/

 

 

Yasur  | Vanuatu  | 19.532°S, 169.447°E  | Summit elev. 361 m

 

Based on webcam images, satellite data, and local visual observations the Wellington VAAC reported that during 14-15 and 17-18 June intermittent, low-level ash plumes from Yasur rose to altitudes of 0.9-1.2 km (3,000-4,000 ft) a.s.l. and drifted SW, W, and N.

 

Geologic Summary. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

 

Source: Wellington Volcanic Ash Advisory Center (VAAC) http://vaac.metservice.com/

 

 











==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/

To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.

==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux