Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)
URL: http://www.volcano.si.
New Activity/Unrest: Aira, Kyushu (Japan) | Ibu, Halmahera (Indonesia) | Kambalny, Southern Kamchatka (Russia) | Nevados de Chillan, Chile
Ongoing Activity: Ambrym, Vanuatu | Bagana, Bougainville (Papua New Guinea) | Bezymianny, Central Kamchatka (Russia) | Bogoslof, Fox Islands (USA) | Chirinkotan, Kuril Islands (Russia) | Cleveland, Chuginadak Island (USA) | Colima, Mexico | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Kilauea, Hawaiian Islands (USA) | Klyuchevskoy, Central Kamchatka (Russia) | Lokon-Empung, Sulawesi (Indonesia) | Reventador, Ecuador | Sabancaya, Peru | Sheveluch, Central Kamchatka (Russia) | Sinabung, Indonesia | Suwanosejima, Ryukyu Islands (Japan) | Turrialba, Costa Rica
The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.
Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.
New Activity/Unrest
Aira | Kyushu (Japan) | 31.593°N, 130.657°E | Summit elev. 1117 m
JMA reported very small eruptions at Minamidake summit crater (at Aira Caldera’s Sakurajima volcano) during 28-29 March. Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported that on 4 April an ash plume rose to an altitude of 8 km (26,200 ft) a.s.l. and drifted W. The Alert Level remained at 3 (on a 5-level scale).
Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.
Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/
Tokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.
Ibu | Halmahera (Indonesia) | 1.488°N, 127.63°E | Summit elev. 1325 m
PVMBG reported that an eruption at Ibu at 0058 on 29 March generated an ash plume that rose to an altitude of 1.8 km (5,800 ft) a.s.l. and drifted N. Another event at 0757 on 3 April produced an ash plume that rose to an altitude of 1.7 km (5,500 ft) a.s.l. and drifted S. Seismicity on both days was characterized by events indicating explosions and avalanches.
Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.
Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.
Kambalny | Southern Kamchatka (Russia) | 51.306°N, 156.875°E | Summit elev. 2116 m
KVERT reported that the eruption that began at Kambalny at 2110 on 24 March continued through 31 March. Observers reported that explosions generated ash plumes that rose 5-6 km (16,400-19,700 ft) a.s.l. Satellite images showed ash plumes drifting 2,000 km W, SW, S, and SE during 24-30 March. The Aviation Color Code remained at Orange.
Geologic Summary. The southernmost major stratovolcano on the Kamchatka peninsula, Kambalny has a summit crater that is breached to the SE. Five Holocene cinder cones on the W and SE flanks have produced fresh-looking lava flows. Beginning about 6,300 radiocarbon years ago, a series of major collapses of the edifice produced at least three debris-avalanche deposits. The last major eruption took place about 600 years ago, although younger tephra layers have been found, and an eruption was reported in 1767. Active fumarolic areas are found on the flanks of the volcano, which is located south of the massive Pauzhetka volcano-tectonic depression.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/
Nevados de Chillan | Chile | 36.863°S, 71.377°W | Summit elev. 3212 m
The Buenos Aires VAAC reported that on 3 April a webcam recorded a strong ash puff from Nevados de Chillán rising to an altitude of 4.9 km (16,000 ft) a.s.l. and drifting E.
Geologic Summary. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.
Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.smn.gov.ar/
Ongoing Activity
Ambrym | Vanuatu | 16.25°S, 168.12°E | Summit elev. 1334 m
The Wellington VAAC reported that a low-level ash emission from Ambrym was identified in satellite images on 3 April.
Geologic Summary. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides arc. A thick, almost exclusively pyroclastic sequence, initially dacitic, then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major plinian eruption with dacitic pyroclastic flows about 1900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the caldera floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.
Source: Wellington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.
Bagana | Bougainville (Papua New Guinea) | 6.137°S, 155.196°E | Summit elev. 1855 m
Based on analyses of satellite imagery and model data, the Darwin VAAC reported that on 29 March an ash plume from Bagana rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted SW. On 31 March a NOTAM (notice to airmen) and pilot report suggested that an ash plume rose to an altitude of 2.1 km though ash was not identified in mostly clear satellite images. An ash plume observed on 2 April rose to an altitude of 2.1 km and drifted almost 40 km E.
Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/
Bezymianny | Central Kamchatka (Russia) | 55.972°N, 160.595°E | Summit elev. 2882 m
KVERT reported that during 24-31 March lava continued to advance down the NW flank of Bezymianny's lava dome. A thermal anomaly was identified daily in satellite images. The Aviation Color Code remained at Orange.
Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/
Bogoslof | Fox Islands (USA) | 53.93°N, 168.03°W | Summit elev. 150 m
AVO reported that no significant volcanic activity at Bogoslof was detected in seismic or infrasound data during 29 March-4 April, and satellite views were often obscured by clouds or showed nothing noteworthy. Weakly elevated surface temperatures were identified in satellite images during 28-29 March. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Warning.
Geologic Summary. Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.
Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.
Chirinkotan | Kuril Islands (Russia) | 48.98°N, 153.48°E | Summit elev. 724 m
Based on Tokyo VAAC satellite data, SVERT reported that on 31 March an ash plume from Chirinkotan rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted 165 km NE. The Aviation Color Code was raised to Yellow (on a four-color scale) on 2 April.
Geologic Summary. The small, mostly unvegetated 3-km-wide island of Chirinkotan occupies the far end of an E-W-trending volcanic chain that extends nearly 50 km west of the central part of the main Kuril Islands arc. Chirinkotan is the emergent summit of a volcano that rises 3000 m from the floor of the Kuril Basin. A small 1-km-wide caldera about 300-400 m deep is open to the SE. Lava flows from a cone within the breached crater reached the north shore of the island. Historical eruptions have been recorded at Chirinkotan since the 18th century. Fresh lava flows also descended the SE flank of Chirinkotan during an eruption in the 1880s that was observed by the English fur trader Captain Snow.
Source: Sakhalin Volcanic Eruption Response Team (SVERT) http://www.imgg.ru/?
Cleveland | Chuginadak Island (USA) | 52.825°N, 169.944°W | Summit elev. 1730 m
AVO reported that no significant volcanic activity at Cleveland was detected in seismic or infrasound data during 29 March-4 April, and satellite views were often obscured by clouds. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Warning.
Geologic Summary. Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.
Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.
Colima | Mexico | 19.514°N, 103.62°W | Summit elev. 3850 m
On 31 March the Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that during the previous week the seismic data revealed 45 high-frequency events, 33 long-period events, 2.5 hours of tremor, 11 landslides, and two low-intensity explosions. The sulfur dioxide flux was 360 tons/day, an increase compared to the week before.
Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.
Source: Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima http://portal.ucol.mx/
Dukono | Halmahera (Indonesia) | 1.693°N, 127.894°E | Summit elev. 1229 m
Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 29 March-4 April ash plumes from Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted in multiple directions.
Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/
Ebeko | Paramushir Island (Russia) | 50.686°N, 156.014°E | Summit elev. 1103 m
KVERT reported that during 24-31 March several explosions per day at Ebeko were observed by residents of Severo-Kurilsk (Paramushir Island) about 7 km E. Ash plumes rose to altitudes of 1.5-3.4 km (4,900-11,200 ft) a.s.l. Minor amounts of ash fell in Severo-Kurilsk on 26 March. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/
Fuego | Guatemala | 14.473°N, 90.88°W | Summit elev. 3763 m
INSIVUMEH reported that activity at Fuego increased on 1 April, with the beginning of a new effusive eruption, the third one in 2017. Explosions occurring an average of 10 per hour generated shock waves that vibrated local structures. An ash plume rose an estimated 1.3 km and drifted 10 km W, SW, and S; weather clouds hindered observations. Later that day lava fountains rose 100-300 m high and fed lava flows that traveled 400 m down the Trinidad (S) and Las Lajas (SE) drainages. The effusive phase lasted about 16 hours, ending on 2 April, with lava flows stopping as far as 3 km, and expanding into the Santa Teresa (W) drainage. Ash plumes drifted as far as 80 km W, causing ashfall in areas downwind including Atitlan Lake, Chicacao, Mazatenango, Retalhuleu, and El Palmar. On 4 April explosions generated ash plumes that rose 750 km and drifted S, and avalanches pf material descended the Ceniza drainage.
Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.
Kilauea | Hawaiian Islands (USA) | 19.421°N, 155.287°W | Summit elev. 1222 m
During 29 March-4 April HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea’s Overlook crater. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater, from a vent high on the NE flank of the cone, and from a small lava pond in a pit on the W side of the crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna from the end of the lava tube, about 20 m above the water. National Park Service officials estimated that the lava delta was about 40 m wide and 100 m long. Surface lava flows were active above the pali, and small, short-lived breakouts occurred on the coastal plain.
Geologic Summary. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.
Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/
Klyuchevskoy | Central Kamchatka (Russia) | 56.056°N, 160.642°E | Summit elev. 4754 m
KVERT reported that during 27-30 March explosions at Klyuchevskoy generated ash plumes that rose to an altitude of 7 km (23,000 ft) a.s.l. Satellite images showed a thermal anomaly over the volcano during the previous week, and ash plumes that drifted 300 km in multiple directions. The Aviation Color Code remained at Orange.
Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/
Lokon-Empung | Sulawesi (Indonesia) | 1.358°N, 124.792°E | Summit elev. 1580 m
PVMBG reported that on 25 March six climbers between the ages of 15 and 20 climbed to Lokon-Empung's Tompaluan Crater, into the restricted area, where one of the climbers fell into the crater and died. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were reminded not to approach the crater within a radius of 1.5 km.
Geologic Summary. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.
Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.
Reventador | Ecuador | 0.077°S, 77.656°W | Summit elev. 3562 m
During 28 March-4 April IG reported a high level of seismic activity including explosions, long-period earthquakes, harmonic tremor, and signals indicating emissions at Reventador. Although cloud cover often prevented visual observations, activity was noted almost daily. During 28 March-3 April steam, gas, and ash plumes rose as high as 1.3 km above the crater rim and drifted SW and NE. Incandescence from the crater was sometimes visible during the night. Incandescent blocks rolled 1 km down the flanks on 1 April, and 1.6 km down the SW flank on 3 April. A small lava flow was observed traveling 1.6 km down the SW flank on 3 April.
Geologic Summary. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.
Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/
Sabancaya | Peru | 15.787°S, 71.857°W | Summit elev. 5960 m
Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that during 27 March-2 April there were an average of 41 explosions recorded per day. The number and magnitude of hybrid events decreased while long-period events increased. Ash plumes rose as high as 4.8 km above the crater rim and drifted more than 40 km NW, N, and SW. Ashfall was reported in Pinchollo (20 km N) and Cabanaconde (22 km NW). Overall activity increased compared to the precious week. The Alert Level remained at Orange (the second highest level on a four-color scale).
Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.
Sources: Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/;
Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.
Sheveluch | Central Kamchatka (Russia) | 56.653°N, 161.36°E | Summit elev. 3283 m
KVERT reported that during 24-31 March lava-dome extrusion onto Sheveluch’s N flank was accompanied by strong fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images showed a daily thermal anomaly over the dome, and ash plumes that drifted 20 km SW on 24 and 26 March. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/
Sinabung | Indonesia | 3.17°N, 98.392°E | Summit elev. 2460 m
Based on PVMBG observations, satellite data, and wind data, the Darwin VAAC reported that on 29 March an ash plume from Sinabung rose to altitudes of 4.6 km (15,000 ft) a.s.l. and drifted ESE.
Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/
Suwanosejima | Ryukyu Islands (Japan) | 29.638°N, 129.714°E | Summit elev. 796 m
Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported that on 1 April an explosion at Suwanosejima generated a plume that rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted E
Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.
Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.
Turrialba | Costa Rica | 10.025°N, 83.767°W | Summit elev. 3340 m
OVSICORI-UNA reported that ash-and-gas plumes from Turrialba rose 500 m above the crater during 31 March-1 April. Ashfall was reported at the Juan Santamaría airport, 48 km W. Ash plumes rose 500 m at 1700 on 2 April, and 200 m at 0601 on 4 April.
Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.
Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.
Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).
ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/
To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.
To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.
==============================================================