VOLCANO: Smithsonian / USGS Weekly Volcanic Activity Report, 14 December-20 December 2016

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



*********************************************************************************************************
From: "Venzke, Ed" <VENZKEE@xxxxxx>
Subject: Smithsonian / USGS Weekly Volcanic Activity Report, 14 December-20 December 2016
*********************************************************************************************************


Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx
URL: http://www.volcano.si.edu/reports_weekly.cfm

New Activity/Unrest: Bezymianny, Central Kamchatka (Russia)  | Bogoslof, Fox Islands (USA)  | Colima, Mexico  | Copahue, Central Chile-Argentina border

Ongoing Activity: Bagana, Bougainville (Papua New Guinea)  | Cayambe, Ecuador  | Cerro Hudson, Chile  | Dukono, Halmahera (Indonesia)  | Fuego, Guatemala  | Kilauea, Hawaiian Islands (USA)  | Nevados de Chillan, Chile  | Sabancaya, Peru  | Sheveluch, Central Kamchatka (Russia)  | Sinabung, Indonesia  | Suwanosejima, Ryukyu Islands (Japan)

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.

 

New Activity/Unrest

Bezymianny  | Central Kamchatka (Russia)  | 55.972°N, 160.595°E  | Summit elev. 2882 m

KVERT reported that lava-dome extrusion likely continued at Bezymianny during 14-16 December. A gas-and-steam plume containing a small amount of ash drifted about 118 km W on 15 December. The Tokyo VAAC noted that ash plumes rose as high as 6.1 km (20,000 ft) a.s.l. that same day. The Aviation Color Code remained at Orange.

Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.phpTokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html



Bogoslof  | Fox Islands (USA)  | 53.93°N, 168.03°W  | Summit elev. 150 m

AVO reported that a short-lived explosive eruption at Bogoslof, observed and reported by several pilots around 1600 on 20 December, produced an ash plume that rose to 10.3 km (34,000 ft) a.s.l. A subsequent pilot report made 50 minutes later indicated that activity had decreased. Satellite data showed a discrete, short-lived explosion just prior to 1600, and a detached plume that drifted S. AVO raised the Aviation Color Code to Red and the Volcano Alert Level to Warning.

Geologic Summary. Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/



Colima  | Mexico  | 19.514°N, 103.62°W  | Summit elev. 3850 m

Based on information from the National Civil Protection coordinator, news articles reported that an explosion at Colima occurred at 0943 on 16 December, generating an ash plume that rose 2.3 km above the crater rim and drifted NNW. At 0807 on 17 December an explosion sent an ash plume 1 km above the crater that then drifted NE. Later that day at 2058 a strong explosion (the strongest registered within the past 16 months) ejected incandescent material onto the flanks and ash plumes as high as 2 km. Lava flows and rolling incandescent material traveled as far as 1.7 km down the flanks. Explosions on 18 December produced ash plumes that again rose as high as 2 km above the crater.

Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Sources: Informador http://www.informador.com.mx/57/volcan-de-colimaInformador http://www.informador.com.mx/jalisco/2016/697807/6/volcan-el-colima-registra-fuerte-explosion-esta-noche.htmCBS News http://www.cbsnews.com/news/mexicos-colima-volcano-spews-ash-vapor-more-than-a-mile-into-the-air/Reuters http://globalnews.ca/news/3134357/mexicos-colima-volcano-erupts-twice-in-one-day/



Copahue  | Central Chile-Argentina border  | 37.856°S, 71.183°W  | Summit elev. 2953 m

According to ONEMIOVDAS-SERNAGEOMIN reported that during the first two weeks of December activity at Copahue continued to be dominated by weak Strombolian explosions, likely from a pyroclastic cone forming on the floor of El Agrio crater. The Alert Level remained at Yellow (second highest level on a four-color scale); SERNAGEOMIN recommended no entry into a restricted area within 1.5 km of the crater. ONEMI maintained an Alert Level Yellow (the middle level on a three-color scale) for the municipality of Alto Biobío. 

Based on satellite and webcam images, the Buenos Aires VAAC reported that during 13-20 December gas-and-ash plumes from Copahue rose to altitudes of 3-3.9 km (10,000-13,000 ft) a.s.l. and drifted NE, ENE, E, and SE.

Geologic Summary. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded at Copahue since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Sources: Oficina Nacional de Emergencia-Ministerio del Interior (ONEMI) http://www.onemi.cl/Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.smn.gov.ar/vaac/buenosaires/productos.php

 

Ongoing Activity

Bagana  | Bougainville (Papua New Guinea)  | 6.137°S, 155.196°E  | Summit elev. 1855 m

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that during 16-17 December ash plumes from Bagana rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted E and NE.

Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/



Cayambe  | Ecuador  | 0.029°N, 77.986°W  | Summit elev. 5790 m

IG reported that a seismic swarm detected at Cayambe on 5 June was characterized by an increase in the number of volcano-tectonic events. The swarm occurred near an active fault system, NE of the volcano. The seismic activity progressively declined to baseline levels during August. A minor increase was again observed in September, with events migrating to locations underneath the volcano, and then became more pronounced in November. Anomalously large-magnitude earthquakes occurred on 14 November (M 3.3) and on 27 November (M 3.6). Another swarm was also detected on 27 November. Seismicity continued above baseline levels through 2 December. In addition, climbers reported an increase in a sulfur odor. 

On 13 December IG noted that during the previous week there was an average of 68 earthquakes/day, mainly volcano-tectonic events and some long-period signals. A M3 event located at a depth of 7 km below the summit was recorded on 8 December. Climbers continued to report an increase in a sulfur odor, and also the presence of new cracks in the glacier near the summit.

Geologic Summary. The massive compound andesitic-dacitic Cayambe stratovolcano is located on the isolated western edge of the Cordillera Real, east of the Inter-Andean Valley. The volcano, whose southern flank lies astride the equator, is capped by extensive glaciers, which descend to 4200 m on the eastern Amazonian side. The modern Nevado Cayambe, constructed to the east of older Pleistocene volcanic complexes, contains two summit lava domes located about 1.5 km apart, the western of which is the highest. Several other lava domes on the upper flanks have been the source of pyroclastic flows that reached the lower flanks. A prominent Holocene pyroclastic cone on the lower E flank, La Virgen, fed thick andesitic lava flows that traveled about 10 km E. Nevado Cayambe was recently discovered to have produced frequent explosive eruptions beginning about 4000 years ago, and to have had a single historical eruption during 1785-86.

Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/



Cerro Hudson  | Chile  | 45.9°S, 72.97°W  | Summit elev. 1905 m

Based on an OVDAS-SERNAGEOMIN notice, ONEMI reported that seismicity at Cerro Hudson had become more stable during 1-15 December, after an increase in the magnitude of the highest energy events had been detected the previous month. The volcano Alert Level remained at Yellow (second highest level on a four-color scale), and ONEMI noted that the Alert Level remained at Yellow (the middle level on a three-color scale) for the communities of Aysén, Río Ibáñez, and Chile Chico.

Geologic Summary. The ice-filled, 10-km-wide caldera of the remote Cerro Hudson volcano was not recognized until its first 20th-century eruption in 1971. Cerro Hudson is the southernmost volcano in the Chilean Andes related to subduction of the Nazca plate beneath the South American plate. The massive, 1905-m-high Cerro Hudson covers an area of 300 sq km. The compound caldera is drained through a breach on its NW rim, which has been the source of mudflows down the Río de Los Huemeles. Two cinder cones occur north of the volcano and others occupy the SW and SE flanks. Hudson has been the source of several major Holocene explosive eruptions. An eruption about 6700 years ago was one of the largest known in the southern Andes during the Holocene; another eruption about 3600 years ago also produced more than 10 cu km of tephra. An eruption in 1991 was Chile's second largest of the 20th century and formed a new 800-m-wide crater in the SW part of the caldera.

Source:



Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m

PVMBG reported that during 1 January-19 December white-and-gray plumes rose as high as 1.2 km above the rim of Dukono's Malupang Warirang crater, and were accompanied by roaring heard at the Dukono observation post 11 km away. The eruption plume height generally fluctuated though was higher during periods in May and from late November into December; ashfall increased during the periods of higher plume heights, and was noted in villages within 11 km N, NE, and SW. Seismcity at Dukono remained high. The Alert Level remained at 2 (on a scale of 1-4). Residents and tourists were advised not to approach the crater within a radius of 2 km.

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.id/



Fuego  | Guatemala  | 14.473°N, 90.88°W  | Summit elev. 3763 m

In a special bulletin from 20 December, INSIVUMEH reported increased activity at Fuego. Moderate to strong explosions which sometimes produced shock waves occurred at a rate of 8-13 per hour, and ash plumes rose as high as 950 m and drifted more than 15 km W, SW, and S. Incandescent material was ejected 200-300 m above the crater and landed 300 m away on the flanks. Avalanches of material descended the flanks. Ashfall was reported in areas downwind including Panimaché (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), and Sangre de Cristo (8 km WSW).

Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/



Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev. 1222 m

During 14-20 December HVO reported that the lava lake continued to rise and fall, circulate, and spatter in Kilauea’s Overlook vent; the lake level rose as high as 13 m below the Halema’uma’u floor. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater and from a vent high on the NE flank of the cone. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean near Kamokuna at the easternmost lava delta. An active branch of 61G remained active E of Pu'u 'O'o and advanced slowly E at a rate of only a few tens of meters per day.

Geologic Summary. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/



Nevados de Chillan  | Chile  | 36.863°S, 71.377°W  | Summit elev. 3212 m

According to ONEMI on 16 December, OVDAS-SERNAGEOMIN reported that in recent days there had been sporadic explosions at craters formed at Nevados de Chillán in 2016. The Alert Level remained at Yellow, the middle level on a three-color scale, and the public was reminded not to approach the craters within a 3-km radius.

Geologic Summary. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Source: Oficina Nacional de Emergencia-Ministerio del Interior (ONEMI) http://www.onemi.cl/



Sabancaya  | Peru  | 15.78°S, 71.85°W  | Summit elev. 5967 m

IGP's OVS reported that during 12-18 December seismicity at Sabancaya continued to be dominated by long-period earthquakes; hybrid earthquakes decreased from 14 events per day to 6. Gas-and-ash plumes rose as high as 3.5 km above the crater and drifted more than 35 km NW, E, SE, and S. 

Based on webcam and satellite views, the Buenos Aires VAAC reported that during 14-20 December gas-and-water-vapor emissions and sporadic ash puffs rose 6.4-8.2 km (21,000-27,000 ft) a.s.l. (2.3 km above the crater) and drifted SW, WSW, W, and NW.

Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sources: Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.smn.gov.ar/vaac/buenosaires/productos.php



Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit elev. 3283 m

KVERT reported that during 10-16 December lava-dome extrusion onto Sheveluch’s N flank was accompanied by strong fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images showed a daily thermal anomaly over the dome. The Aviation Color Code remained at Orange.

Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php



Sinabung  | Indonesia  | 3.17°N, 98.392°E  | Summit elev. 2460 m

Based on PVMBG observations, webcam views, and satellite images, the Darwin VAAC reported that on 15, 17, and 19 December ash plumes from Sinabung rose 3-5.8 km (10,000-19,000 ft) a.s.l. and drifted E and S.

Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/



Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit elev. 796 m

Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported that during 17-18 December ash plumes from Suwanosejima rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted SE and SW.

Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html





==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/

To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.

==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux