VOLCANO: Smithsonian / USGS Weekly Volcanic Activity Report 19-25 October 2016

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



*************************************************************************************
From: "Kuhn, Sally" <KUHNS@xxxxxx>
Subject: Smithsonian / USGS Weekly Volcanic Activity Report 19-25 October 2016
*************************************************************************************


Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: http://www.volcano.si.edu/reports_weekly.cfm

 

 

New Activity/Unrest: Bulusan, Luzon (Philippines)  | Cleveland, Chuginadak Island (USA)  | Ebeko, Paramushir Island (Russia)  | Karymsky, Eastern Kamchatka (Russia)  | Ulawun, New Britian (Papua New Guinea)

 

Ongoing Activity: Bagana, Bougainville (Papua New Guinea)  | Colima, Mexico  | Dukono, Halmahera (Indonesia)  | Kilauea, Hawaiian Islands (USA)  | Klyuchevskoy, Central Kamchatka (Russia)  | Nevado del Ruiz, Colombia  | Papandayan, Western Java (Indonesia)  | Raung, Eastern Java (Indonesia)  | Sheveluch, Central Kamchatka (Russia)  | Tengger Caldera, Eastern Java (Indonesia)  | Turrialba, Costa Rica

 

 

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

 

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.

 

 

 

New Activity/Unrest

 

 

Bulusan  | Luzon (Philippines)  | 12.77°N, 124.05°E  | Summit elev. 1565 m

 

PHIVOLCS reported that a phreatic explosion occurred at 0458 on 19 October from the vents on Bulusan's upper SE flank. The seismic network recorded the event as an explosion-type earthquake that lasted nine minutes. Dense weather clouds obscured views although limited observations indicated that the plume rose 1 km. A 20-minute-long phreatic explosion occurred from the summit crater at 1234 on 21 October. A thin layer of ash was reported in Casiguran and Gubat, and trace amounts of ash fell in barangays in Barcelona, Casiguran, and Gubat. At 1531 on 23 October a 15-minute-long phreatic explosion from the summit vent produced an ash plume that rose 2.5 km and drifted WSW. Small pyroclastic flows traveled about 2 km down the flank. Trace ashfall was reported in multiple barangays in Irosin Town, ashfall 0.5 mm thick was reported in the municipality of Juban, and the most ash, 1 mm thick deposits, were found in barangay Puting Sapa, Juban. A second and much smaller explosion was recorded at 1539 from the SE vent and generated an ash plume that rose 500 m. Rumbling and a sulfur odor was noted in several nearby areas. The Alert Level remained at 1, indicating abnormal conditions and a 4-km-radius Permanent Danger Zone (PDZ).

 

Geologic Summary. Luzon's southernmost volcano, Bulusan, was constructed along the rim of the 11-km-diameter dacitic-to-rhyolitic Irosin caldera, which was formed about 36,000 years ago. Bulusan lies at the SE end of the Bicol volcanic arc occupying the peninsula of the same name that forms the elongated SE tip of Luzon. A broad, flat moat is located below the topographically prominent SW rim of Irosin caldera; the NE rim is buried by the andesitic Bulusan complex. Bulusan is flanked by several other large intracaldera lava domes and cones, including the prominent Mount Jormajan lava dome on the SW flank and Sharp Peak to the NE. The summit of 1565-m-high Bulusan volcano is unvegetated and contains a 300-m-wide, 50-m-deep crater. Three small craters are located on the SE flank. Many moderate explosive eruptions have been recorded at Bulusan since the mid-19th century.

 

Source: Philippine Institute of Volcanology and Seismology (PHIVOLCS) http://www.phivolcs.dost.gov.ph/

 

 

Cleveland  | Chuginadak Island (USA)  | 52.825°N, 169.944°W  | Summit elev. 1730 m

 

AVO reported that an explosion at Cleveland was detected at 1310 on 24 October by both infrasound (air pressure) sensors and seismic data. Residents in Nikolski (75 km E) reported hearing the explosion. Weather clouds obscured satellite views although no eruption plume was detected above the cloud deck at 8.5 km (30,000 ft) a.s.l. AVO raised the Level of Concern Color Code to Orange and the Volcano Alert Level to Watch. Clear webcam views on 25 October showed intermittent, minor steam emissions possibly containing slight amounts of ash rising just above the crater rim.

 

Geologic Summary. Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

 

Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/

 

 

Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev. 1103 m

 

KVERT reported that, according to observers in Severo-Kurilsk (Paramushir Island) about 7 km E, a gas-and-steam plume continuing ash rose from Ebeko to an altitude of 1.5 km (4,900 ft) a.s.l. and drifted 15 km ENE on 20 October. The Aviation Color Code was raised to Yellow (the second lowest on a four-color scale). Later that day observers noted gas, steam, and ash plumes rising 1.3-1.4 km (4,300-4,600 ft) a.s.l. and drifting 10 km NE. Ground-based and satellite observations during 21-23 October indicated quiet conditions; the Aviation Color Code was lowered to Green on 24 October.

 

Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit elev. 1513 m

 

On 19 October KVERT stated that moderate steam-and-gas emissions and an occasional weak thermal anomaly at Karymsky continued to be detected in satellite images. The Aviation Color Code was lowered to Yellow.

 

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Ulawun  | New Britian (Papua New Guinea)  | 5.05°S, 151.33°E  | Summit elev. 2334 m

 

Based on analyses of satellite imagery, the Darwin VAAC reported that during 19-21 and 23-25 October ash plumes from Ulawun rose to altitudes of 2.7-23 km (9,000-10,000 ft) a.s.l. and drifted 25-110 km NW, W, and SW.

 

Geologic Summary. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. Ulawun volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m of the 2334-m-high Ulawun volcano is unvegetated. A prominent E-W-trending escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and eastern flanks. A steep-walled valley cuts the NW side of Ulawun volcano, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/

 

 

Ongoing Activity

 

 

Bagana  | Bougainville (Papua New Guinea)  | 6.137°S, 155.196°E  | Summit elev. 1855 m

 

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that during 19 and 24-25 October ash plumes from Bagana rose to altitudes of 2.1-3 km (7,000-10,000 ft) a.s.l. and drifted NW and W.

 

Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/

 

 

Colima  | Mexico  | 19.514°N, 103.62°W  | Summit elev. 3850 m

 

Based on multiple sources including webcam and satellite images, the Mexico City MWO, and Jalisco Civil Protection agency, the Washington VAAC reported that ash plumes from Colima rose to altitudes of 4.7-6.7 km (15,400-22,000 ft) a.s.l. and drifted N, NE, and SW during 18-20, 22, and 24 October.

 

On 21 October the Unidad Estatal de Protección Civil de Colima reported that lava continued to flow down the S flank. The lava flow was 2.3 km long, 320 m wide, and had an estimated volume of 21 million m3. Low-to-moderate explosions continued. The exclusion zone was maintained at 12 km in the Montegrande canyon (SSE) and 8 km on the other flanks.

 

Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

 

Sources: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

Unidad Estatal de Protección Civil de Colima www.proteccioncivil.col.gob.mx

 

 

Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m

 

Based on analyses of satellite imagery, information from PVMBG, and model data, the Darwin VAAC reported that during 18-19 and 21-25 October ash plumes from Dukono rose to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted as far as 215 km E, NW, W, SW, and S.

 

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/

 

 

Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev. 1222 m

 

During 19-25 October HVO reported that the lava lake continued to rise and fall, circulate, and spatter in Kilauea’s Overlook vent; the lava lake rose as high as 6 m below the Halema’uma’u floor. A small explosion from the lake on 19 October was triggered by a rockslide, and a slightly larger explosion on 20 October was caused by a collapse of a slice of the crater rim.

 

Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean near Kamokuna.

 

Geologic Summary. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

 

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/

 

 

Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit elev. 4754 m

 

KVERT reported that a Strombolian eruption at Klyuchevskoy continued during 14-21 October. Gas-and-steam emissions with variable amounts of ash rose from the summit crater and from the cinder cone in the Apakhonchich drainage on the E flank. A lava flow traveled down the Apakhonchich drainage. Satellite images showed a large and bright daily thermal anomaly at the volcano, and ash plumes from explosions that rose to altitudes of 5-6 km (16,400-19,700 ft) a.s.l. and drifted 300 km NW, E, and SE during 14 and 18-19 October. The Aviation Color Code remained at Orange.

 

Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Nevado del Ruiz  | Colombia  | 4.892°N, 75.324°W  | Summit elev. 5279 m

 

Servicio Geológico Colombiano’s (SGC) Observatorio Vulcanológico y Sismológico de Manizales reported that during 18-24 October seismicity at Nevado del Ruiz was characterized by a slight decrease in the number and magnitude of earthquakes compared to the previous week. Some seismic signals were associated with gas-and-ash emissions which were confirmed by webcam images, and Parque Nacional Natural los Nevados (PNNN) and SGC officials. A steam, gas, and ash plume rose 2 km above the crater and drifted W on 18 October. Two low-energy thermal anomalies were detected on 18 and 20 October. The Washington VAAC reported that on 19 and 20 October ash plumes rose to altitudes of 7.3 and 6.1 km (24,000 and 20,000 ft) a.s.l. and drifted NW and SW, respectively. The Alert Level remained at III (Yellow; the second lowest level on a four-color scale).

 

Geologic Summary. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers >200 sq km. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

 

Sources: Servicio Geológico Colombiano (SGC) http://www.ingeominas.gov.co/

Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

 

 

Papandayan  | Western Java (Indonesia)  | 7.32°S, 107.73°E  | Summit elev. 2665 m

 

PVMBG reported that during 1 August-17 October seismicity at Papandayan fluctuated but decreased overall. Visual monitoring occurred from the Pakuwon Village post where observers noted white plumes rising at most 35 m above the crater. The Alert Level was lowered to 1 (on a scale of 1-4) on 19 October; residents and tourists were reminded not to approach the craters within a 500-m radius.

 

Geologic Summary. Papandayan is a complex stratovolcano with four large summit craters, the youngest of which was breached to the NE by collapse during a brief eruption in 1772 and contains active fumarole fields. The broad 1.1-km-wide, flat-floored Alun-Alun crater truncates the summit of Papandayan, and Gunung Puntang to the north gives a twin-peaked appearance. Several episodes of collapse have created an irregular profile and produced debris avalanches that have impacted lowland areas. A sulfur-encrusted fumarole field occupies historically active Kawah Mas ("Golden Crater"). After its first historical eruption in 1772, in which collapse of the NE flank produced a catastrophic debris avalanche that destroyed 40 villages and killed nearly 3000 people, only small phreatic eruptions had occurred prior to an explosive eruption that began in November 2002.

 

Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.id/

 

 

Raung  | Eastern Java (Indonesia)  | 8.119°S, 114.056°E  | Summit elev. 3260 m

 

PVMBG reported that, although inclement weather conditions often prevented visual observations of Raung during 1 June-19 October, white plumes were occasionally seen rising as high as 300 m above the crater. Seismicity fluctuated but continued to decrease, and then was stable. The Alert Level remained was lowered to 1 (on a scale of 1-4) on 20 October, and the public was reminded not to approach the crater.

 

Geologic Summary. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

 

Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.id/

 

 

Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit elev. 3283 m

 

KVERT reported that during 14-21 October lava-dome extrusion onto Sheveluch’s N flank was accompanied by strong fumarolic activity, dome incandescence, ash explosions, and hot avalanches. Satellite images showed a daily thermal anomaly over the dome. According to video and satellite data, explosions generated ash plumes that rose to altitudes of 6-7 km (19,700-23,000 ft) a.s.l. and drifted 210 km NW, E, and SE during 14-16, 18, and 20 October. The Aviation Color Code remained at Orange.

 

Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Tengger Caldera  | Eastern Java (Indonesia)  | 7.942°S, 112.95°E  | Summit elev. 2329 m

 

PVMBG reported that during 1-20 October brownish, reddish, and grayish gray plumes from Tengger Caldera's Bromo cone rose as high as 900 m above the crater and drifted E, NW, W, and SW. Seismic activity was dominated by constant tremor although the amplitude decreased. On 20 October the Alert Level was lowered to 2 (on a scale of 1-4); residents and visitors were reminded not to approach the crater within a radius of 1 km.

 

Geologic Summary. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

 

Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.id/

 

 

Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m

 

OVSICORI-UNA reported that during 18-22 October continuous passive ash emissions rose from Turrialba as high as 1 km above the vent and drifted NE and W. The activity was accompanied by stable, low-to-moderate amplitude tremor with a few brief intervals of rest. Ash fell in Siquirres (30 ENE), Guacimo (23 km NNE), Guapiles (21 km N), and Moravia (27 km W). During 23-25 October emissions were discontinuous and ash content was low; plumes drifted NW and W. Ashfall was reported in San José (36 km WSW), Tibás (35 km WSW), Guadalupe (32 km WSW), Curridabat (32 km WSW), Tres Ríos (27 km SW), Moravia, San Pedro (32 km WSW), and various areas of the Valle Central.

 

Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

 

Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/

To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.

==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux