*********************************************************************************************** Smithsonian/USGS Weekly Volcanic Activity Report 10-16 August 2011 From: "Venzke, Ed" <VENZKEE@xxxxxx> *********************************************************************************************** Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Cleveland, Chuginadak Island | Dukono, Halmahera | Etna, Sicily (Italy) | Kilauea, Hawaii (USA) | Marapi, Sumatra (Indonesia) | Papandayan, Western Java (Indonesia) | Rabaul, New Britain | Soputan, Sulawesi Ongoing Activity: | Karymsky, Eastern Kamchatka (Russia) | Kizimen, Eastern Kamchatka (Russia) | Popocatépetl, México | Puyehue-Cordón Caulle, Central Chile | Sakura-jima, Kyushu | Shiveluch, Central Kamchatka (Russia) The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest CLEVELAND Chuginadak Island 52.825°N, 169.944°W; summit elev. 1730 m On 9 August AVO reported that possible thermal anomalies on Cleveland were detected in satellite imagery. Cloud cover prevented observations of the summit area during 10-12 and 15-16 August, but several thermal anomalies were visible during 13-14 August. A scientist that flew 32 km N of the volcano on 14 August observed small white "puffs" of steam rising 30-60 m above the summit, even though most of the volcano was obscured by clouds. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. No current seismic information was available because Cleveland does not have a real-time seismic network. Geologic Summary. Symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited dumbbell-shaped Chuginadak Island in the east-central Aleutians. The 1,730-m-high stratovolcano is the highest of the Islands of Four Mountains group and is one of the most active in the Aleutians. Numerous large lava flows descend its flanks. It is possible that some 18th to 19th century eruptions attributed to Carlisle (a volcano located across the Carlisle Pass Strait to the NW) should be ascribed to Cleveland. In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions from Mt. Cleveland have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks. Source: Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/ DUKONO Halmahera 1.68°N, 127.88°E; summit elev. 1335 m According to a news article, activity at Dukono has continued to increase. On 11 August ash explosions were audible within a radius of about 7 km from the base of the volcano. Ash was ejected as high as 1 km above the crater, producing plumes that drifted E and S, and also approached Tobelo City (14 km ENE). Seismographs at the Dukono observation post recorded more than 100 eruption earthquakes. Based on analyses of satellite imagery, the Darwin VAAC reported that on 11 and 14 August ash plumes rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 93 km NW. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Sources: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html, Metro TV News http://www.metrotvnews.com/read/newsvideo/2011/08/11/133892/Aktivitas-Gunung-Dukono-terus-Meningkat ETNA Sicily (Italy) 37.734°N, 15.004°E; summit elev. 3330 m Sezione di Catania - Osservatorio Etneo reported that on 11 August sporadic ash emissions from Etna's New SE Crater produced small grayish-brown ash plumes. Thermal surveillance cameras revealed hot material in late-afternoon emissions. In the evening and throughout the night small Strombolian explosions were observed at intervals of a few tens of minutes. Early on 12 August, the day of the tenth paroxysmal eruptive episode of 2011, the Strombolian activity intensified and was accompanied by an increase in volcanic tremor amplitude. Strombolian explosions then produced dark ash clouds, and lava overflowed the E rim of the crater through a deep breach formed during previous eruptions. During the following 30 minutes or so Strombolian activity rapidly intensified, and formed a pulsating lava fountain about 100 m tall. Fifteen minutes later a dense column of ash rose above the lava fountain while large bombs and blocks fell onto the cone surrounding the New SE Crater. During the most intense period three vents in the crater were active, two in the central portion and one close to the E-rim breach. Soon after, the two vents in the center of the crater emitted only ash, while the E vent continued to eject jets of incandescent lava. The activity completely ceased more than a half an hour later. The lava produced during the eruption descended the W slope of the Valle del Bove in numerous lobes; the most advanced lava fronts reached the base of the steep slope above Monte Centenari. Ash- and lapilli-fall affected a relatively narrow area between Zafferana (10 km SE), and the coastal area between Giarre and Acireale, on the SE flank. Geologic Summary. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BC. Historical lava flows cover much of the surface of this massive basaltic stratovolcano, the highest and most voluminous in Italy. Two styles of eruptive activity typically occur at Etna. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more of the three prominent summit craters, the Central Crater, NE Crater, and SE Crater. Flank eruptions, typically with higher effusion rates, occur less frequently and originate from fissures that open progressively downward from near the summit. A period of more intense intermittent explosive eruptions from Etna's summit craters began in 1995. The active volcano is monitored by the Instituto Nazionale di Geofisica e Volcanologia (INGV) in Catania. Source: Sezione di Catania - Osservatorio Etneo http://www.ct.ingv.it/ KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m During 10-16 August HVO reported that Kilauea's summit lava lake was mostly crusted, but lava, possibly from a source higher on the SE wall, occasionally flowed over the surface. Small rockfalls from the vent walls were frequent, and the gas plume from the vent continued to deposit variable amounts of ash and occasionally fresh spatter nearby. During an overflight on 11 August, scientists observed an E-W trench in the deepest part of the cavity. Lava was upwelling from the E end and flowing W. During 14-15 August hot and possibly spattering vents were visible on the W part of the cavity floor. At the E-rift zone, lava continued to trickle onto Pu'u 'O'o's collapsed crater floor and some spattering occurred from various sources the floor. The W-flank vents remained active and fed an elongated perched lava pond that extended to the SW, and also a small flow which advanced a short distance N. Small overflows or breaches from the elongated lake were occasionally active on the N side. During the 11 August overflight, scientists noted that the activity was less vigorous; the two channels that continued to feed the perched lake were crusted over and the W-flank vents were no longer spattering. The pond rims were higher and the pond was narrower, lava flows from the base of the pond were active on the N and W sides of the pond, and the S rim of the pond appeared to be slowly migrating S. The crater floor subsided a small amount on 15 August. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ MARAPI Sumatra (Indonesia) 0.381°S, 100.473°E; summit elev. 2891 m According to a news article, two eruptions from Marapi occurred on 9 August. The article also noted that the Alert Level remained at 2 (on a scale of 1-4). Geologic Summary. Gunung Marapi, not to be confused with the better known Merapi volcano on Java, is Sumatra's most active volcano. Marapi is a massive complex stratovolcano that rises 2,000 m above the Bukittinggi plain in Sumatra's Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, along which volcanism has migrated to the W. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no historical lava flows outside the summit craters have been reported. Source: Metro TV News http://www.metrotvnews.com/read/newsvideo/2011/08/10/133771/Gunung-Marapi-Masih-Waspada PAPANDAYAN Western Java (Indonesia) 7.32°S, 107.73°E; summit elev. 2665 m On 13 August, CVGHM reported that, based on seismicity, deformation, geochemistry, and visual observations, the Alert Level for Papandayan was raised to 3 (on a scale of 1-4). During 1 June-12 August sulfur plumes rose 20-75 m above the vents. During the same period, seismicity increased with several hundreds of earthquakes detected per month. Temperature measurements in the Manuk thermal area indicated a relative increase from 29 June to 12 August and deformation measurements indicated inflation from 4 July to 10 August. Visitors and residents were not to venture within 2 km of the active crater. Geologic Summary. Papandayan is a complex stratovolcano with four large summit craters, the youngest of which was breached to the NE by collapse during a brief eruption in 1772 and contains active fumarole fields. The broad 1.1-km-wide, flat-floored Alun-Alun crater truncates the summit of Papandayan, and Gunung Puntang to the N gives the volcano a twin-peaked appearance. Several episodes of collapse have given the volcano an irregular profile and produced debris avalanches that have impacted lowland areas beyond the volcano. Since its first historical eruption in 1772, in which a catastrophic debris avalanche destroyed 40 villages, only two small phreatic eruptions have occurred from vents in the NE-flank fumarole field, Kawah Mas. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://www.vsi.esdm.go.id/ RABAUL New Britain 4.271°S, 152.203°E; summit elev. 688 m RVO reported a decline in frequency of ash emission from Rabaul caldera's Tavurvur cone during 9-12 August, and no distinct explosions were detected. Ash-rich plumes rose 1 km above the crater and drifted NW, causing ashfall in Rabaul town (3-5 km NW) and in areas between Toliap (10 km NW) and Tavui. Seismicity was very low, consisting of sub-continuous volcanic tremor associated with the ash emissions and some small discrete low-frequency earthquakes. Ash emissions ceased on 12 August. During 13-15 August white vapor plumes rose from the crater. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Rabaul Volcano Observatory (RVO) SOPUTAN Sulawesi 1.108°N, 124.73°E; summit elev. 1784 m CVGHM reported that during 19 July-13 August white plumes from Soputan’s summit crater rose 50-150 m. Seismicity fluctuated, but declined overall until 10 August. On 14 August a gray-and-white eruption plume rose 1 km above the crater. Throughout the day, two more similar plumes rose 1.3 km above the crater. Based on analysis of satellite imagery, the Darwin VAAC reported that an ash plume drifted more than 100 km W. The Alert Level was raised to 3 (on a scale of 1-4). Visitors and residents were prohibited from going within a 6-km radius of the crater. Sources: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://www.vsi.esdm.go.id/, Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html Ongoing Activity KARYMSKY Eastern Kamchatka (Russia) 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that during 5-12 August moderate seismic activity continued at Karymsky and possible ash plumes rose to an altitude of 3 km (9,800 ft) a.s.l. A thermal anomaly on the volcano was detected daily by satellite. During 7-8 August, pilots observed ash plumes that rose to an altitude of 4 km (13,100 ft) a.s.l. and drifted E. Satellite imagery also showed an ash cloud, 3 by 1.5 km in dimension, that was 10 km W of the volcano on 10 August. The Aviation Color Code remained at Orange. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php KIZIMEN Eastern Kamchatka (Russia) 55.130°N, 160.32°E; summit elev. 2376 m KVERT reported that during 5-12 August seismicity from Kizimen was above background levels and weak volcanic tremor continued to be detected. Video images showed fumarolic activity and an occasional steam-and-gas plume that rose to an altitude of 4 km (13,100 ft) a.s.l. A lava flow on the E flank remained active. Satellite images showed a bright thermal anomaly on the volcano all week. The Aviation Color Code remained at Orange. Geologic Summary. Kizimen is an isolated, conical stratovolcano that is morphologically similar to Mount St. Helens prior to its 1980 eruption. The summit of Kizimen consists of overlapping lava domes, and blocky lava flows descend the flanks of the volcano, which is the westernmost of a volcanic chain north of Kronotsky volcano. The 2,376-m-high Kizimen was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2,000-3,500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of longterm lava-dome growth have occurred. The latest eruptive cycle began about 3,000 years ago with a large explosion and was followed by lava-dome growth lasting intermittently about 1,000 years. An explosive eruption about 1,100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. A single explosive eruption, during 1927-28, has been recorded in historical time. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php POPOCATEPETL México 19.023°N, 98.622°W; summit elev. 5426 m CENAPRED reported that late on 9 August an ash plume from Popocatépetl rose 1 km above the crater and drifted W. During 11-12 August steam-and-gas emissions occasionally contained small amounts of ash. Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. Source: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.unam.mx/es/ PUYEHUE-CORDON CAULLE Central Chile 40.590°S, 72.117°W; summit elev. 2236 m During 10-14 August, OVDAS-SERNAGEOMIN reported that the eruption continued from the Cordón Caulle rift zone, part of the Puyehue-Cordón Caulle volcanic complex. Cloud cover prevented video camera observations during 10-12 August and satellite observations during 10-11 August. A diffuse plume detected in satellite imagery on 12 August drifted 150 km E. On 14 August a gray plume recorded by the camera rose 2 km above the crater, and satellite imagery showed a plume drifting 100-150 km E and SE. The Alert Level remained at Red, indicating that ashfall and lahars remain a hazard. Geologic Summary. The Puyehue-Cordón Caulle volcanic complex (PCCVC) is a large NW-SE-trending late-Pleistocene to Holocene basaltic-to-rhyolitic transverse volcanic chain SE of Lago Ranco. The 1799-m-high Pleistocene Cordillera Nevada caldera lies at the NW end, separated from Puyehue stratovolcano at the SE end by the Cordón Caulle fissure complex. The Pleistocene Mencheca volcano with Holocene flank cones lies NE of Puyehue. The basaltic-to-rhyolitic Puyehue volcano is the most geochemically diverse of the PCCVC. The flat-topped, 2236-m-high Puyehue volcano was constructed above a 5-km-wide caldera and is capped by a 2.4-km-wide summit caldera of Holocene age. Lava flows and domes of mostly rhyolitic composition are found on the eastern flank of Puyehue. Historical eruptions originally attributed to Puyehue, including major eruptions in 1921-22 and 1960, are now known to be from the Cordón Caulle rift zone. The Cordón Caulle geothermal area, occupying a 6 x 13 km wide volcano-tectonic depression, is the largest active geothermal area of the southern Andes volcanic zone. Source: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/ SAKURA-JIMA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m Based on information from JMA, the Tokyo VAAC reported that during 10-16 August explosions from Sakura-jima produced plumes that rose to altitudes of 1.5-3.7 km (5,000-12,000 ft) a.s.l. On 12 August, a pilot observed an ash plume that rose to an altitude of 2.4 km (8,000 ft) a.s.l. Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismicity at Shiveluch was moderate during 5-12 August. Seismic data indicated that possible ash plumes rose to an altitude of 6.7 km (22,000 ft) a.s.l. on 8 August, to an altitude of 6 km (19,700 ft) a.s.l. on 10 August, and to altitudes of 4-5.5 km (13,100-18,000 ft) a.s.l. on other days. Ground-based observers indicated that ash plumes rose to an altitude of 7 km (23,000 ft) a.s.l. on 6 August. Satellite imagery showed a daily thermal anomaly on the lava dome, and ash plumes that drifted 60 and 20 km SE on 6 and 10 August, respectively. The Aviation Color Code remained at Orange. Based on analysis of satellite imagery, the Tokyo VAAC reported that on 13 August a possible eruption produced a plume that rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted W. Ash was seen in subsequent satellite images that same day. An eruption on 15 August produced a plume that rose to an altitude of 7.9 km (26,000 ft) a.s.l. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. Intermittent explosive eruptions began in the 1990s from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx. To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments. ==============================================================