VOLCANO: Smithsonian/USGS Weekly Volcanic Activity Report 29 June-5 July 2011

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




************************************************************************************************
Smithsonian/USGS Weekly Volcanic Activity Report 29 June-5 July 2011
Sally Kuhn Sennert < kuhns@xxxxxx >
************************************************************************************************

Smithsonian/USGS Weekly Volcanic Activity Report
29 June-5 July 2011

Sally Kuhn Sennert - Weekly Report Editor
kuhns@xxxxxx
URL: http://www.volcano.si.edu/reports/usgs/


New Activity/Unrest: | Kirishima, Kyushu | Kliuchevskoi, Central Kamchatka (Russia) | Lokon-Empung, Sulawesi | Nabro, Eritrea | Puyehue-Cordón Caulle, Central Chile | Soputan, Sulawesi

Ongoing Activity: | Batu Tara, Komba Island (Indonesia) | Dukono, Halmahera | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaii (USA) | Kizimen, Eastern Kamchatka (Russia) | Sakura-jima, Kyushu | Santa María, Guatemala | Shiveluch, Central Kamchatka (Russia) | Taal, Luzon


The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.



New Activity/Unrest


KIRISHIMA Kyushu 31.931°N, 130.864°E; summit elev. 1700 m

Based on notifications from JMA, the Tokyo VAAC reported that on 29 June an eruption from Kirishima's Shinmoe-dake (Shinmoe peak) produced a plume that rose to altitudes of 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted N.

Geologic Summary. Kirishima is a large group of more than 20 Quaternary volcanoes located north of Kagoshima Bay. The late-Pleistocene to Holocene volcano group consists of stratovolcanoes, pyroclastic cones, maars, and underlying shield volcanoes located over an area of 20 x 30 km. The larger stratovolcanoes are scattered throughout the field, with the centrally located, 1,700-m-high Karakuni-dake being the highest. Onami-ike and Mi-ike, the two largest maars, are located SW of Karakuni-dake and at its far eastern end, respectively. Holocene eruptions have been concentrated along an E-W line of vents from Mi-ike to Ohachi, and at Shinmoe-dake to the NE. Frequent small-to-moderate explosive eruptions have been recorded since the 8th century.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html


KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m

Based on information from the Yelizovo Airport (UHPP), the Tokyo VAAC reported that an eruption from Kliuchevskoi on 3 July produced a plume that rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted E.

Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html


LOKON-EMPUNG Sulawesi 1.358°N, 124.792°E; summit elev. 1580 m

CVGHM reported that during 1-25 June white plumes rose 50-200 m above Tompaluan crater, in the saddle between the Lokon-Empung peaks. On 26 June a phreatic eruption ejected material that fell around the crater and produced a gray plume that rose 400 m above the crater rim and drifted N. Seismicity increased the next day and white plumes rose 50-200 m above the crater. The Alert Level was raised to 3 (on a scale of 1-4). Visitors and residents were prohibited from going within a 3-km radius of the crater.

Geologic Summary. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2.2 km apart) has a flat, craterless top. The morphologically younger Empung volcano has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred.

Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://www.vsi.esdm.go.id/


NABRO Eritrea 13.37°N, 41.70°E; summit elev. 2218 m

A satellite image of Nabro acquired on 29 June showed a clear view of the caldera and the vent within the active crater near the middle of the caldera. Lava flows to the W, and within the crater (E and S of the vent), continued to be hot. A brown ash plume rose from the vent and drifted S.

Geologic Summary. The 2218-m-high Nabro stratovolcano is the highest volcano in the Danakil depression of northern Ethiopia and Eritrea. Located at the SE end of the Danakil Alps, Nabro lies in the Danakil horst. Nabro is the most prominent and NE-most of three volcanoes with large summit calderas aligned in a NE-SW direction SW of Dubbi volcano. These three volcanoes, along with Sork Ale volcano, collectively comprise the Bidu volcanic complex. The complex Nabro stratovolcano is truncated by nested calderas, 8 and 5 km in diameter. The larger caldera is widely breached to the SW. Nabro was constructed primarily of trachytic lava flows and pyroclastics. Post-caldera rhyolitic obsidian domes and basaltic lava flows were erupted inside the caldera and on its flanks. Some very recent lava flows were erupted from NNW-trending fissures transverse to the trend of the Nabro volcanic range.

Source: NASA Earth Observatory http://earthobservatory.nasa.gov/IOTD/view.php?id=51253


PUYEHUE-CORDON CAULLE Central Chile 40.590°S, 72.117°W; summit elev. 2236 m

OVDAS-SERNAGEOMIN reported that the eruption continued from the Cordón Caulle rift zone, part of the Puyehue-Cordón Caulle volcanic complex. During 29-30 June weather conditions prevented views of the eruption plume by cameras installed around the volcano as well as by satellite. On 1 July a white plume, possibly with lower ash content, rose 3 km above the crater and was observed in satellite imagery drifting 200 km N. News articles noted that flights in Argentina were disrupted.

During 2-4 July SERNAGEOMIN noted that dark gray plumes rose 2-4 km above the crater and were detected in satellite imagery drifting 200-900 km NW, N, and somewhat E. Although there were no new aerial observations, seismicity indicated that during 29 June-2 July the lava flow remained active, although to a lesser degree than during previous days. During 2-3 July seismic signals indicated that lava had stopped flowing or was emitted at a slower rate. The next day high-intensity tremor suggested that the lava flow was again active. On 5 July satellite imagery showed that the plume drifted N then NW. The Alert Level remained at 6, Red.

Geologic Summary. The Puyehue-Cordón Caulle volcanic complex (PCCVC) is a large NW-SE-trending late-Pleistocene to Holocene basaltic-to-rhyolitic transverse volcanic chain SE of Lago Ranco. The 1799-m-high Pleistocene Cordillera Nevada caldera lies at the NW end, separated from Puyehue stratovolcano at the SE end by the Cordón Caulle fissure complex. The Pleistocene Mencheca volcano with Holocene flank cones lies NE of Puyehue. The basaltic-to-rhyolitic Puyehue volcano is the most geochemically diverse of the PCCVC. The flat-topped, 2236-m-high Puyehue volcano was constructed above a 5-km-wide caldera and is capped by a 2.4-km-wide summit caldera of Holocene age. Lava flows and domes of mostly rhyolitic composition are found on the eastern flank of Puyehue. Historical eruptions originally attributed to Puyehue, including major eruptions in 1921-22 and 1960, are now known to be from the Cordón Caulle rift zone. The Cordón Caulle geothermal area, occupying a 6 x 13 km wide volcano-tectonic depression, is the largest active geothermal area of the southern Andes volcanic zone.

Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/,
Agence France-Presse http://www.mysinchew.com/node/59794?tid=37


SOPUTAN Sulawesi 1.108°N, 124.73°E; summit elev. 1784 m

CVGHM reported that during June diffuse white plumes from Soputan rose 25-150 m. During 21 June-2 July seismicity increased, and on 2 July the Alert Level was raised to 3 (on a scale of 1-4). Visitors and residents were discouraged from going within a 6-km radius of the crater and climbing the volcano was prohibited. According to news articles, a CVGHM volcanologist reported that a Strombolian eruption that began on 3 July produced an ash plume that rose 6 km and drifted W. Ashfall impacted villages, trees, and vegetation downwind. Sam Ratulangi International airport in the capital of Manado was closed for three hours. Articles also stated that the Red Cross distributed about 31,000 masks to area residents.

Geologic Summary. The small conical volcano of Soputan on the southern rim of the Quaternary Tondano caldera is one of Sulawesi's most active volcanoes. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Sources: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://www.vsi.esdm.go.id/,
VIVA News http://us.nasional.vivanews.com/news/read/230615-gunung-soputan-meletus--awan-panas-keluar,
The Jakarta Globe http://www.thejakartaglobe.com/news/agencies-keep-close-eye-on-mount-soputan-eruption/450616,
The Jakarta Globe http://www.thejakartaglobe.com/news/red-cross-sends-face-masks-to-residents-near-mt-soputan/450943


Ongoing Activity


BATU TARA Komba Island (Indonesia) 7.792°S, 123.579°E; summit elev. 748 m

Based on analyses of satellite imagery, the Darwin VAAC reported that during 1-3 July ash plumes from Batu Tara rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 75 km NW.

Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html


DUKONO Halmahera 1.68°N, 127.88°E; summit elev. 1335 m

Based on analyses of satellite imagery, the Darwin VAAC reported that on 1 July an ash plume from Dukono rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 110 km E.

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html


KARYMSKY Eastern Kamchatka (Russia) 54.05°N, 159.45°E; summit elev. 1536 m

KVERT reported moderate seismic activity at Karymsky during 24 June-1 July. A thermal anomaly was detected in satellite imagery on 25, 28, and 30 June. The Aviation Color Code remained at Orange.

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php


KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m

HVO reported that two lava lakes at Kilauea were active during 29 June-5 July. The level of the summit lava lake fluctuated deep in the vent inset within the E wall of Halema'uma'u Crater. Periodic measurements indicated that the gas plume from the vent continued to deposit variable amounts of ash nearby. At Pu'u 'O'o, lava from vents near the NE edge of the perched lava lake in the center of the crater floor continued to fill the lake. The lake level fluctuated and overflowed the edges or flowed through rim breaches, sending lava onto the Pu'u 'O'o crater floor. On 3 July inflation caused the crater floor and perched lake rim in the southern half of Pu`u `O`o Crater to rise; those areas continued to rise on 4 July until a large breach on the S rim of the lava lake occurred at midnight. Lava spilled onto the crater floor between the perched rim and the crater wall. The N rim rose briefly but rapidly between 5 and 10 minutes after midnight. The preliminary sulfur dioxide emission rate from all east rift zone sources was calculated at 700 tonnes/day on 30 June.

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/


KIZIMEN Eastern Kamchatka (Russia) 55.130°N, 160.32°E; summit elev. 2376 m

KVERT reported that during 24 June-1 July seismicity from Kizimen was above background levels and volcanic tremor continued to be detected. A thermal anomaly was detected in satellite imagery during 23-25, 28, and 30 June. The Aviation Color Code remained at Orange.

Geologic Summary. Kizimen is an isolated, conical stratovolcano that is morphologically similar to Mount St. Helens prior to its 1980 eruption. The summit of Kizimen consists of overlapping lava domes, and blocky lava flows descend the flanks of the volcano, which is the westernmost of a volcanic chain north of Kronotsky volcano. The 2,376-m-high Kizimen was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2,000-3,500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of longterm lava-dome growth have occurred. The latest eruptive cycle began about 3,000 years ago with a large explosion and was followed by lava-dome growth lasting intermittently about 1,000 years. An explosive eruption about 1,100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. A single explosive eruption, during 1927-28, has been recorded in historical time.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php


SAKURA-JIMA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m

According to pilot observations, the Tokyo VAAC reported that ash plumes rose from Sakura-jima to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l on 28 and 30 July. Reports from JMA stated that plumes rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. during 30 June-1 July. An explosion was noted on 4 July.

Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html


SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m

INSIVUMEH reported that on 29 July a lahar descended Santa María's Nima I drainage, passing by the Observatory Vulcanológico de Santiaguito (OVSAN), about 5 km S of the lava dome. The lahar was 1.5 m high, 25 m wide, and carried fine material as well as different-sized blocks. During 3-4 July a steam plume rose 300 m above the crater and drifted SW.

Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/


SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m

KVERT reported moderate seismic activity at Shiveluch during 24 June-1 July. Ground-based observers noted that ash plumes rose to an altitude of 7.5 km (24,600 ft) a.s.l. Satellite imagery showed a thermal anomaly on the lava dome on 23 and 24 June and ash plumes that drifted 107 km NW on 24 June. The Aviation Color Code remained at Orange.

Based on analysis of satellite imagery, the Tokyo VAAC reported that on 5 July a possible eruption produced a plume that rose to an altitude of 3.4 km (11,000 ft) a.s.l. and drifted E. A subsequent notice that day stated that ash had dissipated.

Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. Intermittent explosive eruptions began in the 1990s from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.

Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php,
Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html


TAAL Luzon 14.002°N, 120.993°E; summit elev. 311 m

PHIVOLCS reported that during the previous 11 weeks, since the Alert Level for Taal was raised to 2 (on a scale of 0-5) on 9 April, the number of earthquakes recorded daily gradually declined, hydrothermal activity abated, carbon dioxide gas emissions decreased, ground temperature and total magnetic field measurements in the main crater showed no significant changes, and deformation data showed no signs of increasing pressure. On 5 July the Alert Level was lowered from 2 to 1.

Geologic Summary. Taal volcano is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. In contrast to Mayon volcano, Taal is not topographically prominent, but its prehistorical eruptions have greatly changed the topography of SW Luzon. The 15 x 20 km Taal caldera is largely filled by Lake Taal, whose 267 sq km surface lies 700 m below the S caldera rim and only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is a complex volcano composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that has grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions of Taal have caused many fatalities.

Source: Philippine Institute of Volcanology and Seismology (PHIVOLCS) http://www.phivolcs.dost.gov.ph/index.php




==============================================================

To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.

==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux