VOLCANO: SI/USGS Weekly Volcanic Activity Report 7-13 October 2009

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




*******************************************************************************
SI/USGS Weekly Volcanic Activity Report 7-13 October 2009
From: Sally Kuhn Sennert kuhns@xxxxxx<mailto:kuhns@xxxxxx>
*******************************************************************************
SI/USGS Weekly Volcanic Activity Report
7-13 October 2009

Sally Kuhn Sennert - Weekly Report Editor
kuhns@xxxxxx
URL: http://www.volcano.si.edu/reports/usgs/


New Activity/Unrest: | Karymsky, Eastern Kamchatka | Kizimen, Eastern Kamchatka | Kliuchevskoi, Central Kamchatka (Russia) | Piton de la Fournaise, Reunion Island | Sakura-jima, Kyushu | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat

Ongoing Activity: | Arenal, Costa Rica | Bagana, Bougainville | Batu Tara, Komba Island (Indonesia) | Dukono, Halmahera | Fuego, Guatemala | Kilauea, Hawaii (USA) | Koryaksky, Eastern Kamchatka | Rabaul, New Britain | Suwanose-jima, Ryukyu Islands (Japan)

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.


New Activity/Unrest


KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m

KVERT reported that seismic activity at Karymsky was above background levels during 2-9 October and possibly indicated weak ash explosions. On 7 October, field scientists saw an ash plume that rose to an altitude of 3.5 km (11,500 ft) a.s.l. and drifted SSE. The Level of Concern Color Code remained at Orange. Based on information from KEMSD, the Tokyo VAAC reported that on 9 October an eruption produced a plume that rose to an altitude of 3 km (10,000 ft) a.s.l.

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php,
Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html


KIZIMEN Eastern Kamchatka 55.130°N, 160.32°E; summit elev. 2376 m

On 10 October, KVERT reported that seismicity from Kizimen was at background levels in September, but began to increase in October, especially on the 9th. A weak thermal anomaly was seen over the volcano in satellite imagery on 17 and 21 September. The Level of Concern Color Code was raised to Yellow.

Geologic Summary. Kizimen is an isolated, conical stratovolcano that is morphologically similar to Mount St. Helens prior to its 1980 eruption. The summit of Kizimen consists of overlapping lava domes, and blocky lava flows descend the flanks of the volcano, which is the westernmost of a volcanic chain north of Kronotsky volcano. The 2,376-m-high Kizimen was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2,000-3,500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of longterm lava-dome growth have occurred. The latest eruptive cycle began about 3,000 years ago with a large explosion and was followed by lava-dome growth lasting intermittently about 1,000 years. An explosive eruption about 1,100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. A single explosive eruption, during 1927-28, has been recorded in historical time.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php


KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m

KVERT reported that during 2-9 October seismic activity from Kliuchevskoi was above background levels; many earthquakes and weak tremor were detected. Satellite imagery revealed a weak thermal anomaly over the volcano. During 2-3 October, Strombolian eruptions sent tephra 70-100 m above the crater and fumarolic activity was noted. On 7 October a fumarolic plume containing some ash rose to an altitude of 5.7 km (19,700 ft) a.s.l. The Level of Concern Color Code was raised to Orange.

Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php


PITON DE LA FOURNAISE Reunion Island 21.231°S, 55.713°E; summit elev. 2632 m

During 5-6 October, OVPDLF reported increased seismicity from Piton de la Fournaise. A seismic crisis on 7 October prompted OVPDLF to raise the Alert Level to 1. Earthquakes were centered between the Bory and Dolomieu craters, and deformation was detected on the N side of Dolomieu. Seismicity remained above background levels during 8-13 October.

Geologic Summary. Massive Piton de la Fournaise shield volcano on the island of Réunion is one of the world's most active volcanoes. Most historical eruptions have originated from the summit and flanks of a 400-m-high lava shield, Dolomieu, that has grown within the youngest of three large calderas. This depression is 8 km wide and is breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows within the caldera, have been documented since the 17th century. The volcano is monitored by the Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris.

Source: Observatoire Volcanologique du Piton de la Fournaise (OVPDLF) http://www.ipgp.fr/pages/03030810.php


SAKURA-JIMA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m

Based on information from JMA, the Tokyo VAAC reported that explosions from Sakura-jima during 7-12 October produced plumes that rose to altitudes of 1.2-2.7 km (4,000-9,000 ft) a.s.l. and drifted W, SW, S, and SE. An explosion was also detected on 13 October.

Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html


SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m

KVERT reported that during 2-9 October seismic activity from Shiveluch was above background levels. Analyses of satellite imagery revealed a large daily thermal anomaly over the lava dome. According to video camera data and visual observations, fumarolic plumes containing small amounts of ash rose to an altitude of 4 km (13,100 ft) a.s.l. during 1-3 October. Based on interpretations of seismic data, possible ash plumes rose to an altitude of 6.8 km (22,300 ft) a.s.l. on 6 October and to an altitude of 4.5 km (14,800 ft) a.s.l. on other days. The Level of Concern Color Code remained at Orange.

Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. Intermittent explosive eruptions began in the 1990s from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php


SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m

MVO reported that ash-venting events from Soufrière Hills lava dome, which had begun on 4 October, ceased in the early hours of 7 October; there were a total of thirteen events. The last three were associated with small pyroclastic flows that traveled about 500 m down Tyers Ghaut to the NNW. Observations on 7 October revealed tongues of rockfall and small pyroclastic-flow deposits at the heads of Tyers Ghaut to the NNW, Tar River valley to the E, White River to the S, and Gages to the W. A small area of incandescence from the N flank of the lava dome was seen during 7-8 October.

Aerial observations on 9 October revealed that a new lava dome was growing on the S side of the volcano, above the White River valley. During 9-13 October, rockfalls and pyroclastic flows occurred; ashfall was reported in area to the NW (Old Towne, Salem, Olveston and Woodlands) on 9-10 October. On 11 and 13 October, pyroclastic flows moved down Tyres Ghaut to the NNW, and extended as far away as 2 km from the lava dome. Fine-grained surge deposits were seen on higher areas either side of the ghaut. Pyroclastic flows occasionally travelled down the White River valley; associated ash clouds moved WNW. On 13 October, seismicity related to small pyroclastic flows traveling NW gradually increased and culminated with the largest event since 4 October. The resulting pyroclastic flow, from a small collapse of the lava dome, traveled about 2 km and produced an ash plume that rose to an altitude of 6.1 km (20,000 ft) a.s.l.

Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms/


Ongoing Activity


ARENAL Costa Rica 10.463°N, 84.703°W; summit elev. 1670 m

OVSICORI-UNA reported that during September activity originating from Arenal's Crater C consisted of gas emissions, sporadic Strombolian eruptions, and occasional avalanches that traveled down the W flank. Acid rain and small amounts of ejected pyroclastic material affected the NE and SE flanks. Avalanches from lava-flow fronts traveled down the SW flanks. Crater D produced only fumarolic activity.

Geologic Summary. Conical Volcan Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1,657-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. The earliest known eruptions of Arenal took place about 7,000 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. Arenal's most recent eruptive period began with a major explosive eruption in 1968. Continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows has occurred since then from vents at the summit and on the upper western flank.

Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/


BAGANA Bougainville 6.140°S, 155.195°E; summit elev. 1750 m

Based on analyses of satellite imagery, the Darwin VAAC reported that on 9 October an ash plume from Bagana rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 45 km SW.

Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. Bagana is a massive symmetrical lava cone largely constructed by an accumulation of viscous andesitic lava flows. The entire lava cone could have been constructed in about 300 years at its present rate of lava production. Eruptive activity at Bagana is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50-m-thick with prominent levees that descend the volcano's flanks on all sides.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html


BATU TARA Komba Island (Indonesia) 7.792°S, 123.579°E; summit elev. 748 m

Based on analyses of satellite imagery, the Darwin VAAC reported that on 6 October an ash plume from Batu Tara was seen drifting 65 km W at an altitude of 2.4 km (8,000 ft) a.s.l.

Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html


DUKONO Halmahera 1.68°N, 127.88°E; summit elev. 1335 m

Based on analyses of satellite imagery, the Darwin VAAC reported that on 7 October an ash plume from Dukono rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 74 km NW.

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html


FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m

On 9, 12, and 13 October, INSIVUMEH reported that explosions from Fuego produced ash plumes that rose to altitudes of 4.1-4.6 km (13,500-15,100 ft) a.s.l. and drifted W. Some explosions were accompanied by rumbling noises, and avalanches of blocks descended the flanks. On 9 October, a lahar traveled down the Lajas ravine, carrying blocks up to 50 cm in diameter.

Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua.

Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/


KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m

During 7-13 October, HVO reported that lava flowed SE from underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex through a lava tube system, reaching the Waikupanaha ocean entry. Thermal anomalies detected in satellite images revealed active surface lava flows on top of the pali. Intermittent incandescence was seen from Pu'u 'O'o crater and the East wall vent during 7-10 October.

The vent in Halema'uma'u crater continued to produce a diffuse white plume that drifted mainly SW. Small amounts of ash were retrieved from collection bins placed near the plume. Incandescence originated from a source deep inside the vent cavity; on 13 October a crusted lava pond surface was seen. Preliminary measurements indicated that the sulfur dioxide emission rate at the summit remained elevated; 800 tonnes per day was measured on 11 October. The 2003-2007 average rate was 140 tonnes per day.

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/


RABAUL New Britain 4.271°S, 152.203°E; summit elev. 688 m

RVO reported that during 2-8 October gray ash plumes from Rabaul caldera's Tavurvur cone rose 2 km above the crater. Ashfall was reported in Rabaul town (3-5 km NW) and surrounding areas. Incandescence from the summit crater was occasionally visible. Based on analyses of satellite imagery, the Darwin VAAC reported that on 9 October an ash plume rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 75 km NW.

Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Sources: Rabaul Volcano Observatory (RVO),
Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html


SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m

Based on information from JMA, the Tokyo VAAC reported explosions from Suwanose-jima on 10 and 11 October. A plume rose to an altitude of 1.5 km (5,000 ft) a.s.l. on 10 October.

Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx

To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux