******************************************************* SI/USGS Weekly Volcanic Activity Report 10-16 December 2008 ******************************************************* Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Chaitén, Southern Chile | Kliuchevskoi, Central Kamchatka (Russia) | Nevado del Huila, Colombia | Piton de la Fournaise, Reunion Island | Sangay, Ecuador | Soufrière Hills, Montserrat | Tungurahua, Ecuador Ongoing Activity: | Bagana, Bougainville Island (SW Pacific) | Colima, México | Dukono, Halmahera (Indonesia) | Fuego, Guatemala | Galeras, Colombia | Karymsky, Eastern Kamchatka | Kilauea, Hawaii (USA) | Manam, Northeast of New Guinea (SW Pacific) | Pacaya, Guatemala | Rabaul, New Britain (SW Pacific) | Santa María, Guatemala | Shiveluch, Central Kamchatka (Russia) | Suwanose-jima, Ryukyu Islands (Japan) The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest CHAITEN Southern Chile 42.833°S, 72.646°W; summit elev. 1122 m SERNAGEOMIN reported that during 25 November-15 December gas-and-steam plumes with variable amounts of ash rose from Chaitén to altitudes of 2.6-3.1 km (8,500-10,200 ft) a.s.l. and drifted E. Intense gas emissions came from the S flank of the first new lava dome (Dome 1), and from the NE part of the second new dome (Dome 2). On 4 December ash ejections originated from the WNW area of the dome complex. Ash plumes rose from Dome 2 to an altitude of 3.6 km (11,800 ft) a.s.l. and drifted W. An overflight on 6 December revealed that the old lava dome was almost completely covered by Dome 1 (reddish to brown in color). Most of the eruptive activity was concentrated at the site of Dome 2, NE of Dome 1. Dome 2 was grayish in color and exhibited pinnacles and a very uneven top. Constant rockfalls originated from the slopes. Gravitational collapses of the spines produced block-and-ash flows that traveled N, NW, and S, and towards the contact area of the two domes. Domes 1 and 2 both exceeded the height of the caldera rim; Dome 1 was about 250 m above the N rim of the caldera, and Dome 2 was about 350 m above the rim. During 9-15 December, Dome 2 continued to grow rapidly and generate block-and-ash flows. The Alert Level remained at Red. Based on observations of satellite imagery and web camera views, the Buenos Aires VAAC reported that during 10-11 and 13-14 December ash and steam plumes continuously rose to altitudes 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted E, NE, N, and NW. Thermal anomalies were detected on satellite imagery on 10 and 14 December. Geologic Summary. Chaitén is a small, glacier-free caldera with a Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. A pyroclastic-surge and pumice deposit considered to originate from the eruption that formed the elliptical 2.5 x 4 km wide summit caldera was dated at about 9400 years ago. A rhyolitic, 962-m-high obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km away from the volcano to the north and south. The caldera is breached on the SW side by a river that drains to the bay of Chaitén, and the high point on its southern rim reaches 1122 m. Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/, Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m KVERT reported that seismic activity at Kliuchevskoi was above background levels during 5-12 December. Strombolian activity ejected bombs 500 m above the crater and lava effusion on the NW flank continued. Phreatic bursts occurred where the lava flow front contacted the Erman Glacier. On 6 and 9 December, ashfall was reported in Klyuchi, about 30 km to the NE. Analysis of satellite imagery revealed a large daily thermal anomaly in the crater. Gas-and-steam plumes containing small amounts of ash rose to altitudes of 5-6 km (16,400-19,700 ft) a.s.l. and drifted more than 300 km E. During 8-10 December, ash plumes rose to altitudes of 7.5-8 km (24,600-26,200 ft) a.s.l. and drifted about 700 km E. The Level of Concern Color Code remained Orange. Based on information from KVERT and analysis of satellite imagery, the Tokyo VAAC reported that during 13-15 December eruptions ash produced plumes to altitudes of 5.2-8.2 km (17,000-27,000 ft) a.s.l. Plumes drifted E and NE. Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html NEVADO DEL HUILA Colombia 2.93°N, 76.03°W; summit elev. 5365 m INGEOMINAS reported that during 12-16 December steam-and-gas plumes drifting SE and SW from Nevado del Huila were seen on a video camera rising to an altitude of 6.9 km (22,600 ft) a.s.l. A video camera was set up SSW of the volcano on 12 December. Geologic Summary. Nevado del Huila, the highest active volcano in Colombia, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. Two glacier-free lava domes lie at the southern end of the Huila volcanic complex. The first historical eruption from this little known volcano took place in the 16th century. Two persistent steam columns rise from the central peak, and hot springs are also present. Source: Instituto Colombiano de Geología y Minería (INGEOMINAS) http://www.ingeominas.gov.co// PITON DE LA FOURNAISE Reunion Island 21.231°S, 55.713°E; summit elev. 2632 m OVPDLF reported that a seismic crisis at Piton de la Fournaise on 14 December was characterized by hundreds of earthquakes, many greater than M 2.5. On 15 December, an eruption began from two fissures inside Dolomieu crater and produced low-velocity lava flows that ponded at the bottom, covering about 20 percent of the 21 September lava flow. Geologic Summary. Massive Piton de la Fournaise shield volcano on the island of Réunion is one of the world's most active volcanoes. Most historical eruptions have originated from the summit and flanks of a 400-m-high lava shield, Dolomieu, that has grown within the youngest of three large calderas. This depression is 8 km wide and is breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows within the caldera, have been documented since the 17th century. The volcano is monitored by the Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris. Source: Observatoire Volcanologique du Piton de la Fournaise (OVPDLF) http://ovpf.univ-reunion.fr/ SANGAY Ecuador 2.002°S, 78.341°W; summit elev. 5230 m Based on analysis of satellite imagery, the Washington VAAC reported that a small gas-and-steam plume with some ash rose from Sangay on 16 December. Geologic Summary. The isolated Sangay volcano, located E of the Andean crest, is the southernmost of Ecuador's volcanoes, and its most active. It has been in frequent eruption for the past several centuries. The steep-sided, 5,230-m-high glacier-covered volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the E, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. Sangay towers above the tropical jungle on the E side; on the other sides flat plains of ash from the volcano have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of an historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The more or less constant eruptive activity has caused frequent changes to the morphology of the summit crater complex. Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that seismicity from Soufrière Hills lava dome remained elevated during 6-10 December. On 10 December, seven pyroclastic flows traveled W down Gages Valley, at least two reached Plymouth (about 5 km W). A few small pyroclastic flows were detected during 11-12 December. Monitoring data indicated that the volcano continued to inflate. Based on analysis of satellite imagery and information from MVO, the Washington VAAC reported that on 14 December an ash plume drifted W at an altitude of 1.8 km (6,000 ft) a.s.l. A diffuse gas-and-steam plume possibly containing ash drifted W the next day. On 13 December, a pilot reported that an ash plume rose to altitudes of 4.6-5.2 km (15,000-17,000 ft) a.s.l. On 15 December, ash plumes at altitudes of 2.4-3 km (8,000-10,000 ft) a.s.l. drifted SW. The next day an ash plume drifted S and a thermal anomaly was detected on satellite imagery. Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Sources: Montserrat Volcano Observatory (MVO) http://www.mvo.ms, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m The IG reported that activity from Tungurahua on 15 December was characterized by increased seismicity, ash emissions, and the ejection of incandescent blocks. Ash plumes rose to an altitude of 6 km (19,700 ft) a.s.l. and drifted NE. Ashfall was reported 6 km NNE in Runtún. Observers at the Tungurahua Observatory (OVT) in Guadalupe, 11 km N, saw incandescent blocks ejected from the summit fall onto the W flank. Later that night, ash plumes rose to altitudes of 7 km (23,000 ft) a.s.l. and incandescence was seen at the summit. Emissions with variable ash content were seen on 16 December. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ Ongoing Activity BAGANA Bougainville Island (SW Pacific) 6.140°S, 155.195°E; summit elev. 1750 m Based on analysis of satellite imagery, the Darwin VAAC reported that on 16 December an ash plume from Bagana rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted SW. Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. Bagana is a massive symmetrical lava cone largely constructed by an accumulation of viscous andesitic lava flows. The entire lava cone could have been constructed in about 300 years at its present rate of lava production. Eruptive activity at Bagana is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50-m-thick with prominent levees that descend the volcano's flanks on all sides. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html COLIMA México 19.514°N, 103.62°W; summit elev. 3850 m During 9-16 December, gray and white plumes from Colima rose to altitudes of 3.9-4.5 km (12,800-14,800 ft) a.s.l. Plumes occasionally drifted SE and N. On 11 December, a gray plume rose to an altitude of 5.8 km (19,000 ft) a.s.l. Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth. Source: Gobierno del Estado de Colima http://www.colima-estado.gob.mx/2006/seguridad/indvolcan.php DUKONO Halmahera (Indonesia) 1.68°N, 127.88°E; summit elev. 1335 m Based on analysis of satellite imagery, the Darwin VAAC reported that on 15 December an ash plume from Dukono rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted about 160 km SE. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m Based on NOTAM's ("Notices to Airmen"), the Washington VAAC reported that on 9 December a possible gas-and-ash plume from Fuego rose to an altitude of 4.9 km (16,000 ft) a.s.l., drifted N, and dissipated rapidly. INSIVUMEH reported that on 12 December explosions produced ash plumes that rose to altitudes of 4.1-5 km (13,500-16,400 ft) a.s.l. and drifted SSW. The explosions produced rumbling and degassing sounds, and shock waves were detected 10 km away. Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html GALERAS Colombia 1.22°N, 77.37°W; summit elev. 4276 m INGEOMINAS reported that thermal images of the lava dome in Galeras's crater were taken during an overflight on 11 December. The images revealed temperatures as hot as 530 degrees Celsius on the N side of the dome and temperatures near 80 degrees Celsius on the W side. Temperatures had declined compared to thermal images taken in October 2008. On 16 December, INGEOMINAS reported that during the previous few days, gas plumes rose to altitudes of 5.9-6.7 km (19,400-22,000 ft) a.s.l. and drifted NW. Geologic Summary. Galeras, a stratovolcano with a large breached caldera located immediately W of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic Galeras volcanic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Longterm extensive hydrothermal alteration has affected the volcano. This has contributed to large-scale edifice collapse that has occurred on at least three occasions, producing debris avalanches that swept to the W and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors. Source: Instituto Colombiano de Geología y Minería (INGEOMINAS) http://www.ingeominas.gov.co// KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that during 5 and 9-10 December seismic activity at Karymsky was at background levels; possible explosions may have generated ash-and-gas plumes to an altitude of 2.8 km (9,200 ft) a.s.l. Volcanologists occasionally saw ash plumes rise to altitudes of 2 km (6,600 ft) a.s.l. and drift E. Ash deposits on the E flank were more than 5 km long. Analysis of satellite imagery revealed a thermal anomaly in the crater on 8 December and an ash plume that drifted ESE. The Level of Concern Color Code remained at Orange. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m HVO reported that during 10-16 December lava flowed SE through a tube system from underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex, reaching the Waikupanaha ocean entry. Incandescence was occasionally seen at the TEB vent, and surface flows were noted on and at the base of the pali, and on the coastal plain. A branch of lava previously seen traveling S towards the Hawai'i Volcanoes National Park boundary went about 55 m into the park. On 16 December, a Pu'u 'O'o Crater web camera was hit with a small amount of debris, suggesting a collapse in the crater. Earthquakes were variously located beneath the caldera, along the SW rift zone, and along the S-flank fault. Beneath Halema'uma'u crater the number of earthquakes on 10 December ranged from 150 to 200, but were too small to be located more precisely (less than M 1.7 and recorded on fewer than four seismometers). The vent in Halema'uma'u crater continued to produce a predominantly white plume that drifted mainly SW and deposited small amounts of tephra. Weak winds caused poor air quality at the summit. Sounds resembling rockfalls were sometimes heard in the vicinity of the crater. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ MANAM Northeast of New Guinea (SW Pacific) 4.080°S, 145.037°E; summit elev. 1807 m Based on analysis of satellite imagery, the Darwin VAAC reported that on 15 December an ash plume from Manam rose to an altitude of 3 km (10,000 ft) a.s.l. Geologic Summary. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys," regularly spaced 90 degrees apart, channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE avalanche valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded at Manam since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html PACAYA Guatemala 14.381°N, 90.601°W; summit elev. 2552 m On 12 December INSIVUMEH reported that fumarolic plumes from Pacaya's MacKenney cone drifted NE at a low altitude. Three lava flows, 150, 250, and 800 m long, were observed from the S. Seismic data indicated small explosions at the crater. Geologic Summary. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. Pacaya is a complex volcano constructed on the southern rim of the 14 x 16 km Pleistocene Amatitlan caldera. A cluster of dacitic lava domes occupies the caldera floor. The Pacaya massif includes the Cerro Grande lava dome and a younger volcano to the SW. Collapse of Pacaya volcano about 1,100 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (MacKenney cone) grew. During the past several decades, activity at Pacaya has consisted of frequent Strombolian eruptions with intermittent lava flow extrusion on the flanks of MacKenney cone, punctuated by occasional larger explosive eruptions. Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/ RABAUL New Britain (SW Pacific) 4.271°S, 152.203°E; summit elev. 688 m RVO reported that during 6-12 December gray ash plumes from Rabaul caldera's Tavurvur cone rose to an altitude of 1.7 km (5,600 ft) a.s.l. and drifted in multiple directions. Ashfall was reported in areas downwind, including Rabaul town (3-5 km NW). Rumbling and roaring noises were reported on some days. Explosions or forceful emissions sometimes ejected incandescent lava fragments. Based on analysis of satellite imagery and information from RVO, the Darwin VAAC reported that during 14-16 December ash plumes rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted SE, ESE, and NE. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Sources: Ima Itikarai, Rabaul Volcano Observatory (RVO), Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m INSIVUMEH reported that on 12 December explosions from Caliente dome in Santa María's Santiaguito complex produced an ash plume that rose to an altitude of 3.2 km (10,500 ft) a.s.l. and drifted SW. Based on analysis of satellite imagery, the Washington VAAC reported that an ash plume rose to an altitude of 5.8 km (19,000 ft) a.s.l. and drifted SW. On 16 December, two ash puffs drifted W and WNW at altitudes of 4.3-4.6 km (14,000-15,000 ft) a.s.l. Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was above background levels during 5-12 December. Based on interpretations of seismic data, ash plumes rose to an altitude of 5 km (16,400 ft) a.s.l. Visual observations of weak gas-and-steam emissions were noted during 5, 7, and 9-10 December. Analysis of satellite imagery revealed a daily thermal anomaly on the lava dome. The Level of Concern Color Code remained at Orange. Based on information from KEMSD and analysis of satellite imagery, the Tokyo VAAC reported that on 11 December eruptions produced plumes to an altitude of 4.6 km (15,000 ft) a.s.l. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m Based on information from JMA, analysis of satellite imagery, and pilot reports, the Tokyo VAAC reported explosions or eruptions from Suwanose-jima during 10-12 and 14-16 December. Plumes rose to altitudes of 0.9-1.8 km (3,000-6,000 ft) a.s.l. and drifted E. Details of a possible ash plume on 14 and 16 December were not reported. Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================