**************************************************************** GVP/USGS Weekly Volcanic Activity Report 6-12 February 2008 Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ **************************************************************** New Activity/Unrest: | Anatahan, Mariana Islands (Central Pacific) | Cleveland, Chuginadak Island | Kanlaon, Central Philippines | Llaima, Central Chile | Shishaldin, Fox Islands | Tungurahua, Ecuador Ongoing Activity: | Arenal, Costa Rica | Kilauea, Hawaii (Hawaiian Islands) | Ol Doinyo Lengai, Tanzania | Popocatépetl, México | Rabaul, New Britain (SW Pacific) | Sakura-jima, Kyushu (Japan) | Shiveluch, Sredinny Range | Soufrière Hills, Montserrat | St. Helens, Washington (USA) | Suwanose-jima, Ryukyu Islands (Japan) The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest ANATAHAN Mariana Islands (Central Pacific) 16.35°N, 145.67°E; summit elev. 790 m The USGS reported that seismic tremor levels at Anatahan were relatively low during 8-13 February, except for short-lived increases during 8-9 and 12-13 February. On 9 February, a diffuse steam plume that possibly contained ash was observed on satellite imagery and drifted W. The Washington VAAC reported that more steam plumes possibly containing some ash were visible on satellite imagery on 11, 12, and 13 February and drifted NW and SE. On 13 February, vog (volcanic fog) was also observed N and W of Saipan. Emissions of sulfur dioxide were detected by the satellite-based Ozone Monitoring Instrument (OMI). The Volcanic Alert Level remained at Watch and the Aviation Color Code remained at Orange. Geologic Summary. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of large stratovolcano with a 2.3 x 5 km, E-W-trending compound summit caldera. The larger western caldera is 2.3 x 3 km wide, and its western rim forms the island's 790-m high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. Sparseness of vegetation on the most recent lava flows on Anatahan had indicated that they were of Holocene age, but the first historical eruption of Anatahan did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera. Sources: Emergency Management Office of the Commonwealth of the Mariana Islands and the US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/cnmistatus.php, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html CLEVELAND Chuginadak Island 52.825°N, 169.944°W; summit elev. 1730 m AVO reported that a diffuse ash plume from Cleveland was observed on satellite imagery drifting 12 km SE at an altitude below 1.5 km (5,000 ft) a.s.l. during a break in cloud cover on 8 February. Later that day AVO received pilot reports of an ash plume that rose to an altitude of 6.1 km (20,000 ft) a.s.l. and observed the plume on satellite imagery drifting NW. Due to the increased activity, the Volcanic Alert Level was raised to Watch and the Aviation Color Code was raised to Orange. No precursory or current seismic information is available because Cleveland does not have a real-time seismic network. During 10-11 February, a thermal anomaly was possibly visible on satellite imagery. The Volcanic Alert Level was lowered back to Advisory and the Aviation Color Code was lowered to Yellow on 12 February. Geologic Summary. Symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited dumbbell-shaped Chuginadak Island in the east-central Aleutians. The 1,730-m-high stratovolcano is the highest of the Islands of Four Mountains group and is one of the most active in the Aleutians. Numerous large lava flows descend its flanks. It is possible that some 18th to 19th century eruptions attributed to Carlisle (a volcano located across the Carlisle Pass Strait to the NW) should be ascribed to Cleveland. In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions from Mt. Cleveland have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks. Source: Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/ KANLAON Central Philippines 10.412°N, 123.132°E; summit elev. 2435 m PHIVOLCS reported that during 7-10 February the seismic network for Kanlaon detected a significant rise in earthquakes. On 10 February the Alert Level was raised from 0 to 1 (out of 5). Cloud cover prohibited visual observations of the summit. The public was strongly advised not to enter the 4-km Permanent Danger Zone. Geologic Summary. Kanlaon volcano (also spelled Canlaon), the most active of the central Philippines, forms the highest point on the island of Negros, about 500 km ESE of Manila. The massive stratovolcano is dotted with fissure-controlled pyroclastic cones and craters, many of which are filled by lakes. The summit of Kanlaon contains a broad northern crater with a crater lake and a smaller, but higher, historically active crater to the south. Historical eruptions, recorded since 1866, have typically consisted of phreatic explosions of small-to-moderate size that produce minor ashfalls near the volcano. Source: Philippine Institute of Volcanology and Seismology (PHIVOLCS) http://www.phivolcs.dost.gov.ph/ LLAIMA Central Chile 38.692°S, 71.729°W; summit elev. 3125 m SERNAGEOMIN reported intense Strombolian activity in the main crater of Llaima and explosions that propelled material 500 m in the air on 6 February. Ash-and-gas plumes from the activity rose to altitudes of 5.1-5.6 km (16,700-18,400 ft) a.s.l. and drifted SE more than 30 km. Multiple lava flows traveled 0.7-1.5 km W and N and generated steam plumes due to their interaction with a glacier. Activity declined later that day. During breaks in cloud cover, ash plumes were observed at altitudes of 4.1-9.1 km (13,500-29,900 ft) a.s.l. and drifted NW. During 7-8 February, explosions from two different areas in the main crater produced brown and gray ash-and-gas plumes that rose to altitudes of 4.1-6.2 km (13,500-20,300 ft) a.s.l. and drifted 20 km NW. Incandescent blocks from lava-flow fronts rolled down the flank. According to a news article on 7 and 12 February, people from two communities were evacuated, but were allowed to return to their homes during the daytime. The Buenos Aires VAAC reported that ash plumes at altitudes of 1.2-3.6 km (4,000-11,800 ft) a.s.l. were visible on satellite imagery during 10-12 February. Geologic Summary. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other to the SE. The massive 3,125-m-high, glacier-covered stratovolcano has a volume of 400 cu km. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following eruption of the 24 cu km Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7,200 years ago, construction of the present edifice began, characterized by Strombolian, hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century. Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/index.php Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html 123.cl http://noticias.123.cl/entel123/html/Tele13/Noticias/Regiones/Temuco/331369.html El Mostrador.cl http://www.elmostrador.cl/modulos/noticias/constructor/noticia_new.asp?id_noticia=240194 SHISHALDIN Fox Islands 54.756°N, 163.97°W; summit elev. 2857 m Based on pilot reports, the Anchorage VAAC reported that a small ash plume from Shishaldin rose to an altitude of 3 km (10,000 ft) a.s.l. on 12 February. Ash was not observed on satellite imagery. Geologic Summary. The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2,857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. Constructed atop an older glacially dissected volcano, Shishaldin is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. Shishaldin contains over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, sometimes producing lava flows, have been recorded since the 18th century. Source: Anchorage Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AK/messages.html TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m On 6 February, IG reported that pyroclastic flows from Tungurahua descended multiple NW and W drainages and tephra fall 3 cm in diameter was reported in areas to the SW. Based on information from the IG and satellite imagery evaluation, the Washington VAAC reported that ash plumes rose to estimated altitudes of 7.3-14.3 km (24,000-47,000 ft) a.s.l. and drifted S and NW. Ashfall was reported in areas downwind and to the SW and W, including Riobamba (30 km S). Precursory seismicity saturated local stations and presented similar patterns seen prior to intense episodes in July and August 2006. According to news articles, several hundred to 2,000 people were evacuated. On 7 February, ash plumes rose to altitudes of 7-10 km (23,000-32,800 ft) a.s.l. and drifted mainly NW. Ash and tephra fell in areas to the SW and W. Strong roaring noises, explosions, and "cannon shots" were heard and windows vibrated, as far away as the Tungurahua Observatory (OVT) in Guadalupe, about 13 km NW. Incandescent material was propelled from the summit and fell on the flanks at about 3.5 km elevation, below the crater. Pyroclastic flows were detected in the Chontapamba ravine to the W and in the Juive and Mandur drainages to the NW. According to news articles, residents were evacuated again, hours after being allowed to return home. During 8-11 February, ash plumes rose to altitudes of 6-10 km (19,700-32,800 ft) a.s.l. and drifted mainly W and E (on 10 February, only). Ashfall was reported from areas to the NW, W, and SW and was 3-4 mm thick in Choglontus to the SW on 8 February. Incandescence at the summit was also observed on 8 February. Ground vibrations were reported all four days. On 11 February, Strombolian activity was seen at the summit and material that was propelled out rolled 1.2 km down the flanks. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional Reuters http://news.yahoo.com/s/nm/20080207/sc_nm/ecuador_volcano_dc_4 Reuters http://www.sciam.com/article.cfm?id=ecuador-farmers-evacuated Ongoing Activity ARENAL Costa Rica 10.463°N, 84.703°W; summit elev. 1670 m In January, activity originating from Arenal's Crater C consisted of gas emissions, sporadic Strombolian eruptions, and occasional avalanches from lava-flow fronts that traveled down the S flanks. Blocks from the lava-flow fronts periodically reached vegetation and started small fires. Volcanic activity was at relatively low levels and few eruptions occurred. Acid rain and small amounts of ejected pyroclastic material affected the NE and SE flanks. Eruptions produced ash plumes that rose about 2.2 km (7,100 ft) a.s.l. Small avalanches of volcanic material traveled down several ravines. Crater D showed only fumarolic activity. Geologic Summary. Conical Volcan Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1,657-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. The earliest known eruptions of Arenal took place about 7,000 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. Arenal's most recent eruptive period began with a major explosive eruption in 1968. Continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows has occurred since then from vents at the summit and on the upper western flank. Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/ KILAUEA Hawaii (Hawaiian Islands) 19.421°N, 155.287°W; summit elev. 1222 m Based on field observations, and web camera views when weather permitted, HVO reported that during 6-12 February activity from Kilauea's fissure segment D was concentrated at the perched lava channel, the Thanksgiving Eve Breakout (TEB) shield, and satellitic shields to the SE. Lava flows issued from the tops and flanks of the shields. Lava in the original perched lava channel, formed from the 21 July fissure eruption, overflowed the NW and reached a forested area on 8 February; smoke was seen through the web camera. Incandescence was observed in Pu'u 'O'o crater for less than 10 minutes at a time every day during 6-8 February. A few earthquakes were located beneath the summit, the adjacent flank of Mauna Loa, and along the S-flank faults. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ OL DOINYO LENGAI Tanzania 2.764°S, 35.914°E; summit elev. 2962 m According to Frederick Belton's Ol Doinyo Lengai website, a local camp manager reported to a visitor, that several large explosive eruptions accompanied by "bangs" on 1 February. The manager noted that ash plumes were originating from a location in the crater that was further N than previous locations. The visitor saw ash plumes on 3 February that rose to altitudes of 3.2-3.3 km (10,500-10,800 ft) a.s.l. The next day, an ash plume rose to an altitude of 4.3 km (14,100 ft) a.s.l. Eruptions also occurred on 6 February. Geologic Summary. The symmetrical Ol Doinyo Lengai stratovolcano is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent volcano, known as "The Mountain of God," rises abruptly above the broad plain S of Lake Natron. The cone-building stage of the volcano ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatite and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra eruptions and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater. Petrologists first observed the eruption of carbonatitic lava flows in the 1960s. Subsequent more frequent visits have documented long-term lava effusion in the summit crater that would not have been seen from the foot of the volcano. Source: Frederick Belton's Ol Doinyo Lengai website http://www.mtsu.edu/~fbelton/lengai.html POPOCATEPETL México 19.023°N, 98.622°W; summit elev. 5426 m CENAPRED reported that emissions of steam and gas from Popocatépetl were visible during 6-12 February. The plumes occasionally contained slight amounts of ash. On 8 February, ash emissions were occasionally accompanied by explosions and propelled incandescent fragments that landed in the vicinity of the crater. Two explosive events on 11 February resulted in ashfall in the town of Huejotzingo, Puebla. Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. Source: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.unam.mx/es/ RABAUL New Britain (SW Pacific) 4.271°S, 152.203°E; summit elev. 688 m RVO reported that ash plumes from Rabaul caldera's Tavurvur cone rose to altitudes of 1.2-1.7 km (3,900-5,600 ft) a.s.l. and drifted NW, W, SW, S, SE, and E during 6-11 February. Ashfall was reported everyday in areas downwind, including Matupit, Kokopo, and Rabaul Town, and surrounding areas. During 6-7 February, incandescence at the summit was noted and incandescent material was propelled from a vent on the inner E wall of the crater. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Steve Saunders and Herman Patia, Rabaul Volcano Observatory SAKURA-JIMA Kyushu (Japan) 31.585°N, 130.657°E; summit elev. 1117 m Based on information from JMA, the Tokyo VAAC reported that explosions from Sakura-jima on 6 February produced plumes that rose to altitudes of 1.2-2.1 km (4,000-7,000 ft) a.s.l. and drifted SE. Ash was not detected on satellite imagery. Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SHIVELUCH Sredinny Range 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was slightly above background levels during 1-8 February. Based on seismic interpretation, ash plumes rose to an altitude of 3.8 km (12,200 ft) a.s.l. daily. Strong fumarolic activity was noted on 5 and 6 February. According to observations of satellite imagery, a thermal anomaly was present in the crater on 1, 3, and 6 February. The Level of Concern Color Code remained at Orange. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that that during 5-12 February the lava dome at Soufrière Hills changed very little, based on limited observations (due to inclement weather) during overflights. Seismic activity was very low and low-level rockfall activity continued. Fumarolic activity on the N and E flanks continued. Active fumaroles were also noted in the Galway's area to the S of the dome. Clouds obscured views to the W in the Gages Wall area. The Alert Level remained elevated at 4 (on a scale of 0-5). Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms/ ST. HELENS Washington (USA) 46.20°N, 122.18°W; summit elev. 2549 m Data from deformation-monitoring instruments indicated that during 6-12 February lava-dome growth at Mount St. Helens continued. Seismicity persisted at low levels, punctuated by M 1.5-2.5, and occasionally larger, earthquakes. Clouds and snow cover frequently inhibited visual observations. Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers. Source: Cascades Volcano Observatory (CVO) http://volcano.wr.usgs.gov/ SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m Based on information from JMA, the Tokyo VAAC reported that an eruption plume from Suwanose-jima rose to an altitude of 1.8 km (6,000 ft) a.s.l. on 7 February and drifted E. Explosions were also noted on 8, 9, and 13 February, but altitude and direction of possible plumes were not reported. Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================