GVP/USGS Weekly Volcanic Activity Report 11-17 April 2007

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



*************************************************************
GVP/USGS Weekly Volcanic Activity Report

11-17 April 2007

http://www.volcano.si.edu/reports/usgs/
*************************************************************

New Activity/Unrest: | Concepción, Nicaragua | Etna, Italy | Nevado del Huila, Columbia | Piton de la Fournaise, Reunion Island | Reventador, Ecuador

Ongoing Activity: | Batu Tara, Indonesia | Colima, México | Karymsky, Russia | Kilauea, USA | Kliuchevskoi, Russia | Rabaul, Papua New Guinea | Santa María, Guatemala | Shiveluch, Russia | Soufrière Hills, Montserrat | St. Helens, USA | Tungurahua, Ecuador | Ubinas, Perú

New Activity/Unrest

CONCEPCIÓN Nicaragua 11.538°N, 85.622°W; summit elev. 1,700 m

INETER reported that explosions in the crater of Concepción on 8 April produced an ash-and-gas plume that rose to an altitude of 2.7 km (8,900 ft) a.s.l. and drifted W.

Geologic Summary. Volcán Concepción is one of Nicaragua's highest volcanoes and is also one of its most active. The symmetrical volcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua. Concepción is connected to neighboring Madera volcano by a narrow isthmus. N-S-trending fractures cutting across the volcano are associated with spatter cones, cinder cones, and maars located on the middle N flank and on the lower S flank down to Lake Nicaragua. Concepción has had frequent moderate explosive eruptions in the past century, most of which have originated from a small summit crater.

Source: Instituto Nicaragüense de Estudios Territoriales (INETER) http://www.ineter.gob.ni/

Concepción Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1404-12=

ETNA Sicily, Italy 37.73°N, 15.00°E; summit elev. 3,315 m

A summit eruption that occurred at Etna on 11 April began with an increase in volcanic tremor and was followed by lava fountaining. A resultant ash plume drifted E; ashfall was reported as far as Zafferana, about 10 km to the E. Two lava flows were observed at the summit of Etna, one towards the E within the Valle del Bove, and the second to the S. The E lava flow stopped 3 km away at the base of the Serra Giannicola Grande, within the W Valle del Bove. The second flow stopped near Mt. Frumento Supino (less than 1 km S of the summit). The INGV-CT monitoring web cameras showed that the eruption lasted about 5 hours.

Geologic Summary. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BC. Historical lava flows cover much of the surface of this massive basaltic stratovolcano, the highest and most voluminous in Italy. Two styles of eruptive activity typically occur at Etna. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more of the three prominent summit craters, the Central Crater, NE Crater, and SE Crater. Flank eruptions, typically with higher effusion rates, occur less frequently and originate from fissures that open progressively downward from near the summit. A period of more intense intermittent explosive eruptions from Etna's summit craters began in 1995. The active volcano is monitored by the Instituto Nazionale di Geofisica e Volcanologia (INGV) in Catania.

Source: Istituto Nazionale di Geofisica e Vulcanologia Sezione di Catania http://www.ct.ingv.it/

Etna Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0101-06=

NEVADO DEL HUILA Columbia 2.93°N, 76.03°W; summit elev. 5,365 m ; All times are local (= UTC -4 hours)

According to the Washington VAAC, a pilot reported an ash plume from Nevado del Huila on 17 April. An ash plume that was evident on satellite imagery at 0415 rose to an approximate altitude of 11.3 km (37,000 ft) a.s.l. and drifted E. An additional plume drifted SW. Later that day, INGEOMINAS reported increased seismicity. At 0257 on 18 April, INGEOMINAS reported an eruptive event. Based on a news article, an eruption triggered landslides and swelled rivers. About 5,000 people evacuated from areas to the S.

Geologic Summary. Nevado del Huila, the highest active volcano in Colombia, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. Two glacier-free lava domes lie at the southern end of the Huila volcanic complex. The first historical eruption from this little known volcano took place in the 16th century. Two persistent steam columns rise from the central peak, and hot springs are also present.

Sources: Instituto Colombiano de Geología y Minería (INGEOMINAS) http://www.ingeominas.gov.co/,

Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html,

Mail and Guardian Online http://www.mg.co.za/articlepage.aspx?area=/breaking_news/breaking_news__international_news/&articleid=305130

Nevado del Huila Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1501-05=

PITON DE LA FOURNAISE Réunion Island, Indian Ocean 21.23°S, 55.71°E; summit elev. 2,631 m

OVPDLF reported that the eruption of Piton de la Fournaise from the S-part of Grand Brûlé continued during 11-17 April. On 12 and 13 April, strong seismicity was followed by emissions; a gray plume from the summit of Dolomieu crater drifted NW. Also on 13 April, lava fountaining increased and resulted in several broad lava flows moving towards the sea. On 14 April, projected material reached 100-200 m above the point of emission.

Geologic Summary. The massive Piton de la Fournaise shield volcano on the island of Réunion is one of the world's most active volcanoes. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest of three large calderas. This latter caldera is 8 km wide and is breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows within the caldera, have been documented since the 17th century.

Sources: Observatoire Volcanologique du Piton de la Fournaise (OVPDLF) http://ovpf.univ-reunion.fr/,

Thomas Staudacher, Observatoire Volcanologique du Piton de la Fournaise (OVPDLF) via the Volcano Listserv http://www.volcano.si.edu/reports/volclist/

Piton de la Fournaise Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0303-02=

REVENTADOR Ecuador 0.078°S, 77.656°W, summit elev. 3,562 m

On 11 April, a steam plume from Reventador rose to an altitude of 3.8 km (12,500 ft) a.s.l. Visual observations were hindered during 12-17 April due to inclement weather. On 13 April, the lava flow on the S flank, first observed on 28 March, was 15 m thick and possibly active.

Geologic Summary. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well E of the principal volcanic axis. It is a forested stratovolcano that rises above the remote jungles of the western Amazon basin. A 3-km-wide caldera breached to the E was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1,300 m above the caldera floor. Reventador has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera.

Source: Instituto Geofísico-Escuela Politécnica Nacional http://www.igepn.edu.ec/

Reventador Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-01=

Ongoing Activity

BATU TARA Lesser Sunda Islands, Indonesia 7.792°S, 123.579°E; summit elev. 748 m

Based on satellite imagery and direct observations by CVGHM, the Darwin VAAC reported that on 11 April a diffuse plume from Batu Tara rose to an altitude of 1.5 km (5,000 ft) a.s.l. and drifted W. On 17 April, CVGHM lowered the Alert Level from 3 to 2 (on a scale of 1-4).

Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lomblen Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The only known historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow.

Sources: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/,

Darwin Volcanic Ash Advisory Center http://www.bom.gov.au/info/vaac/advisories.shtml

Batu Tara Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0604-26=

COLIMA Western México 19.514°N, 103.62°W; summit elev. 3,850 m

Multiple steam and gas-and-ash plumes were observed from Colima during 11-12 and 15-16 April. Based on satellite imagery and the Mexico City MWO, the Washington VAAC reported that on 12 April continuous ash-and-steam emissions from Colima produced an ash plume that rose to an altitude of 6.1 km (20,000 ft) a.s.l. and drifted W.

Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Sources: Gobierno del Estado de Colima http://www.colima-estado.gob.mx/2006/seguridad/indvolcan.php,

Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html

Colima Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1401-04=

KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m

Seismic activity at Karymsky was above background levels during 10-13 April. Ash plumes from explosions may have reached altitudes of 4 km (13,000 ft) a.s.l. during the reporting period. The Level of Concern Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/updates.shtml,

Karymsky Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13=

KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m

On 11 April, lava from the E arm of Kilauea’s Campout flow at the base of the long-abandoned Royal Gardens ignited fires within the subdivision. During 11-17 April, lava continued to flow across a lava delta into the ocean at the Kamokuna entry, but lava was not seen entering the ocean at East Lae'apuki. Incandescence was intermittently visible from several breakouts on the Pulama pali and from several vents in the Pu'u 'O'o crater. Earthquake activity was scattered at the summit and S-flank areas.

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world’s most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed by lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. The latest Kilauea eruption began in January 1983 along the E rift zone. This long-term ongoing eruption from Pu`u `O`o-Kupaianaha has produced lava flows that have traveled 11-12 km from the vents to the sea, paving broad areas on the S flank of Kilauea and adding new land beyond the former coastline.

Source: US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/hvostatus.php

Kilauea information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01-

KLIUCHEVSKOI Kamchatka Peninsula, Russia 56.06°N, 160.64°E; summit elev. 4,835 m

Seismic activity at Kliuchevskoi continued above background levels during 10-13 April. Based on observations and video data, lava flowed down the NW flank and Strombolian activity occurred at the crater. Everyday during 10-13 April a gas-and-steam plume possibly containing a small amount of ash rose to an altitude of 6.3 km (20,700 ft) a.s.l. and drifted E. A thermal anomaly in the crater was detected on satellite imagery during 10-12 April. The Level of Concern Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.

Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions have occurred during the past 3,000 years, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive eruptions from flank craters.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/updates.shtml

Kliuchevskoi Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-26=

RABAUL New Britain Island, Papua New Guinea 4.271°S, 152.203°E; summit elev. 688 m

RVO reported that during 10-17 April, Rabaul caldera's Tavurvur cone emitted steam and steam-and-ash plumes that rose to 1.1-2.7 km (3,600-8,900 ft) a.s.l. and drifted S and SE. Weak roaring noises occasionally accompanied the emissions. Small amounts of incandescent material were ejected from the crater during 13-15 April.

Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Source: Steve Saunders and Herman Patia, Rabaul Volcano Observatory

Rabaul Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0502-14=

SANTA MARÍA Guatemala 14.756°N, 91.552°W; summit elev. 3,772 m

INSIVUMEH reported that explosions from Santa María's Santiaguito lava dome complex occasionally produced ash plumes that rose to altitudes of 5.3 km (17,400 ft) a.s.l. and drifted E on 11 and 16 April. Lava-flow fronts on the SW flanks of Caliente Dome emitted gases on 11 April and produced avalanches of block and ash on 16 April. On 13 April, the Washington VAAC reported that an ash plume was visible on satellite imagery drifting W.

Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/geofisica/boletin%20formato.htm,

Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

Santa María Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03=

SHIVELUCH Kamchatka Peninsula, Russia 56.653°N, 161.360°E; summit elev. 3,283 m

Seismic activity at Shiveluch continued above background levels during 4-10 April. Based on seismic interpretation, observation, and video data, possible ash-and-steam plumes rose to altitudes of 4.5-7 km (14,800-23,000 ft) a.s.l. throughout the reporting period. Based on satellite imagery during 10-12 April, plumes drifted N, NW, SE, and SW and a thermal anomaly was present. The Level of Concern Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.

Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large horseshoe-shaped caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/updates.shtml

Shiveluch Information from the Global Volcanism Program

http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=1000-27=

SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev. 1,052 m

Based on visual observations, lava-dome growth at Soufrière Hills continued at a reduced rate during 6-13 April. Material originating from the E-facing shear lobe was shed down the Tar River Valley. Minor rockfalls and pyroclastic flows were noted. On 17 April, a small pyroclastic flow was observed to the NW in the upper part of Tyres Ghaut. The lava-dome volume was an estimated 208 million cubic meters.

Geologic Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the east, was formed during an eruption about 4000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Source: Montserrat Volcano Observatory http://www.mvo.ms/

Soufrière Hills Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05=

ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m

Data from deformation-monitoring instruments and observations from a remote camera showed that during 11-17 April lava-dome growth at Mount St. Helens continued. Seismicity persisted at low levels, punctuated by M 1.5-2.5 and occasionally larger earthquakes. Clouds occasionally inhibited visual observations.

Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers.

Source: US Geological Survey Cascades Volcano Observatory http://vulcan.wr.usgs.gov/Volcanoes/MSH/CurrentActivity/framework.html

St. Helens Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05-

TUNGURAHUA Ecuador 1.47°S, 78.44°W; summit elev. 5,023 m

IG reported that based on visual observations and reports from pilots, ash plumes from Tungurahua rose to altitudes of 6.7-8 km (22,000-26,200 ft) a.s.l. and drifted NNW on 11 April. Fumarolic activity originated from the NE and E edges of the crater. During 12-17 April, ash plumes, occasionally accompanied by roaring, rose to altitudes of 5.8-8 km (19,000-26,200 ft) a.s.l. and drifted mainly W. Ashfall was reported from areas downwind on 12 April. During 13-14 April, Strombolian activity was observed; incandescent material was ejected about 200-300 m above the summit and blocks descended 500-800 m down the flanks. During 15-17 April, lahars descended several NW, W, and SW valleys. In the Pampas sector, lahars with blocks 50 cm in diameter disrupted the roads between Ambato and Baños, and between Baños and Penipe.

Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador’s capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have been restricted to the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano.

Source: Instituto Geofísico-Escuela Poltécnica Nacional http://www.igepn.edu.ec/

Tungurahua Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-08=

UBINAS Perú 16.355°S, 70.903°W; summit elev. 5,672 m

Based on a significant meteorological notice (SIGMET), the Buenos Aires VAAC reported that an ash plume from Ubinas rose to altitudes of 5.5-7 km (26,000-27,000 ft) a.s.l. on 10 April and drifted W. INGEMMET reported that on 11 April, emissions of gas and ash produced plumes to altitudes of 6.2-6.4 km (20,000-21,000 ft) a.s.l. and drifted E. Based on an additional SIGMET, the Buenos Aires VAAC reported that an ash plume rose to altitudes of 6.1-6.4 km (20,000-21,000 ft) a.s.l. and drifted SE.

Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions.

Sources: Instituto Geológical Minero y Metalúrgico (INGEMMET) http://www.ingemmet.gob.pe/,

Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html

Ubinas Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-02=

**+++++++++++++++++++++++++++++++++++++**

**Sally Kuhn Sennert**

**SI/USGS Weekly Volcanic Activity Report Editor**

**Global Volcanism Program**

http://www.volcano.si.edu/reports/usgs/

Smithsonian Institution, National Museum of Natural History

Department of Mineral Sciences, MRC-119

Washington, D.C., 20560

Phone: 202.633.1805
Fax: 202.357.2476
<http://www.volcano.si.edu/reports/usgs/>++++++++++++++++++++++++++++++++++++++++++
==============================================================
To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx

To contribute to the volcano list, send your message to:
volcano@xxxxxxxx  Please do not send attachments.
==============================================================

[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux