********************************************************* GVP/USGS Weekly Volcanic Activity Report 22-28 Feb. 2006 ********************************************************* From: Gari Mayberry <mayberry@xxxxxxxxxxxxxx> GVP/USGS Weekly Volcanic Activity Report 22-28 February 2006 http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Atka, USA | Manam, Papua New Guinea Ongoing Activity: | Augustine, USA | Colima, México | Ebeko, Russia | Galeras, Colombia | Karymsky, Russia | Kilauea, USA | Mayon, Philippines | Popocatépetl, México | Santa Ana, El Salvador | Soufrière Hills, Montserrat | St. Helens, USA | Suwanose-jima, Japan | Tungurahua, Ecuador New Activity/Unrest ATKA Aleutian Islands, United States 52.381°N, 174.154°W; summit elev. 1,533 m AVO reported that the Concern Color Code at Korovin volcano in the Atka volcanic center was raised from Green to Yellow on 22 February due to an increase in seismicity at the volcano <http://www.avo.alaska.edu/color_codes.php>. Distinct seismic signals indicating unrest were recorded on 4 days between 17 and 22 January, with a sustained 11-minute-long seismic signal on 22 February. After 22 February, seismicity decreased and distinct seismic signals like those recorded earlier were not detected. Clouds obscured satellite views of the volcano after 22 February. A pilot report on the 22nd indicated that the summit area was obscured by clouds, and there were no signs of ashfall on the flanks and no steam plume above the volcano. No obvious signs of activity were seen on 23 February by observers in the village of Atka. AVO received no reports of volcanic activity and there were no indications that an eruption was imminent. Background. The largest volcanic center in the central Aleutians, Atka consists of a central shield and Pleistocene caldera ringed by 7 or 8 satellitic volcanoes. The most prominent of these are the post-caldera cones of Korovin, Konia, Kliuchev, and Sarichef, some of which have been active in historical time. Korovin, the most frequently active volcano of the Atka volcanic center, contains a 1,533-m-high double summit with two craters located along a NW-SE line. The NW summit has a small crater, but the 1-km- wide crater of the SE cone has an unusual, open cylindrical vent of widely variable depth that sometimes contains a crater lake or a high magma column. A fresh-looking cinder cone lies on the flank of partially dissected Konia volcano. Sarichef has a symmetrical profile, and Korovin and Kliuchef are relatively uneroded and the source of most if not all historical eruptions. Source: Alaska Volcano Observatory http://www.avo.alaska.edu/activity/avoreport.php?view=update Atka Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1101-16- MANAM offshore New Guinea, Papua New Guinea 4.10°S, 145.06°E; summit elev. 1,807 m; All times are local (= UTC + 10 hours) A large eruption began at Manam on 27 February around 1733 from the volcano's Southern Crater. According to the Darwin VAAC, satellite imagery showed an umbrella cloud above the volcano and a strong hot spot. The edges of the ash cloud were ice rich and the eruption height appeared to be about 19 km (~62,300 ft) a.s.l. based on a warm temperature anomaly in the middle of the cloud indicating a stratospheric intrusion. RVO reported that the strong phase of the eruption declined on 28 February around 0030. During the height of the activity, incandescent lava fragments were thrown 700-800 m high; ejection heights later decreased to 200-300 m. A large amount of ash was deposited on the E part of the island and lava flowed down the SW valley. By 1 March, only gas was emitted from Southern Crater, no noises were heard, and weak incandescence was visible around the vent. Incandescent lava fragments were thrown 100-150 m above the vent and fell into the crater. Main Crater gently emitted occasional ash clouds, and then gas later in the day. Field inspections on 28 February confirmed that a lava flow traveled down the SW valley to about 600 m elevation, a pyroclastic flow traveled down the same valley to about 500 m elevation, and the maximum ash thickness was about 7-8 cm on the E part of the island. After mid-February the seismic station at the volcano was not operating and radio communication with the observer at Bogia ceased. The island is inhabited by about 300 people who returned to the island after evacuating following the 27 January 2005 eruption. The Alert Level at the volcano was at "Stage 2." Background. The 10-km-wide island of Manam is one of Papua New Guinea's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1,807-m-high stratovolcano to its lower flanks. These "avalanche valleys," regularly spaced 90 degrees apart, channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five satellitic centers are located near the island's shoreline. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during the past century into the SE avalanche valley. Frequent historical eruptions have been recorded since 1616. Sources: Rabaul Volcano Observatory, Darwin Volcanic Ash Advisory Center http://www.bom.gov.au/info/vaac/advisories.shtml, Agence France-Presse http://news.yahoo.com/s/afp/20060228/sc_afp/pngvolcano_060228104653 Manam Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0501-02= Ongoing Activity AUGUSTINE SW Alaska, USA 59.363°N, 153.43°W; summit elev. 1,252 m During 21-27 February, seismicity at Augustine was relatively low, but remained above background levels. Seismic data indicated that small rockfalls and avalanches from the lava dome occurred intermittently. A thermal anomaly was visible in the summit area on satellite and camera imagery. These data indicated that the lava dome at the volcano's summit continued to grow slowly. Observations during the report week revealed that a plume composed of variable amounts of gas, steam, and small amounts of ash was emitted intermittently from Augustine's summit. Augustine remained at Concern Color Code Orange <http://www.avo.alaska.edu/color_codes.php>. Background. Augustine volcano, rising above Kamishak Bay in the southern Cook Inlet about 290 km SW of Anchorage, is the most active volcano of the eastern Aleutian arc. It consists of a complex of overlapping summit lava domes surrounded by an apron of volcaniclastic debris that descends to the sea on all sides. Few lava flows are exposed; the flanks consist mainly of debris- avalanche and pyroclastic-flow deposits formed by repeated collapse and regrowth of the volcano's summit. The latest episode of edifice collapse occurred during Augustine's largest historical eruption in 1883; subsequent dome growth has restored the volcano to a height comparable to that prior to 1883. The oldest dated volcanic rocks on Augustine are more than 40,000 years old. At least 11 large debris avalanches have reached the sea during the past 1800-2000 years, and five major pumiceous tephras have been erupted during this interval. Historical eruptions have typically consisted of explosive activity with emplacement of pumiceous pyroclastic-flow deposits followed by lava dome extrusion with associated block-and-ash flows. Sources: Alaska Volcano Observatory http://www.avo.alaska.edu/activity/avoreport.php?view=update, Anchorage Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/AK/messages.html Augustine Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1103-01- COLIMA Western México 19.514°N, 103.62°W; summit elev. ~3,850 m Several small explosions occurred at Colima during 22-26 February. Based on information from the Mexico City MWO, the Washington VAAC reported that an explosion on 22 February produced an ash cloud to an estimated height of 9.1 km (30,000 ft) a.s.l. that drifted NE. Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km- wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth. Sources: Universidad de Colima http://www.ucol.mx/volcan/, Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html Colima Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1401-04= EBEKO Kuril Islands, Russia 50.68°N, 156.02°E; summit elev. 1,156 m KVERT reported that no significant changes in activity at Ebeko had been seen on satellite imagery or via ground observations for several months, so the Concern Color Code was reduced from Yellow to Green, the lowest level <http://www.avo.alaska.edu/color_codes.php>. A weak scent of hydrogen sulfide and chlorine gas was sometimes noted in the town of Severo-Kurilsk, ~7 km from the volcano. Ebeko is not seismically monitored. According to KVERT, it is likely that activity will stay at low levels and an explosive eruption is not imminent in the next weeks. Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. The eastern part of the southern crater of Ebeko contains strong solfataras and a large boiling spring. The central crater of Ebeko is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters of Ebeko, on the outer flanks of the cone, and in lateral explosion craters. Source: Kamchatkan Volcanic Eruption Response Team http://www.kcs.iks.ru/ivs/kvert/updates.shtml Ebeko Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0900-38= GALERAS Colombia 1.22°N, 77.37°W; summit elev. 4,276 m; All times are local (= UTC - 5 hours) During 20-27 February, seismicity continued at Galeras, with an average of 280 small earthquakes occurring per day. On 26 February seismic stations detected a cluster of earthquakes. A shallow M 4.8 volcano-tectonic earthquake was registered below the volcano at 1009, followed by 35 smaller earthquakes. Slight deformation was recorded at the volcano. A flux of about 600 metric tons of sulfur dioxide was measured per day. Steam and gas rose to ~700 m above the volcano (or 16,300 ft a.s.l.). Galeras remained at Alert Level 3 ("changes in the behavior of volcanic activity have been noted"). Background. Galeras, a stratovolcano with a large breached caldera located immediately W of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic Galeras volcanic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has affected the volcano. This has contributed to large-scale edifice collapse that has occurred on at least three occasions, producing debris avalanches that swept to the W and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to- moderate historical eruptions since the time of the Spanish conquistadors. Source: Instituto Colombiano de Geología y Minería http://www.ingeominas.gov.co/tmsingeominas/ModuloPublicacionPortal/PublicacionP ortal.asp Galeras Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1501-08= KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m During 17-24 February, Strombolian activity continued at Karymsky. Satellite imagery showed a large thermal anomaly at the volcano's crater and numerous ash plumes extending as far as 117 km. Karymsky remained at Concern Color Code Orange <http://www.avo.alaska.edu/color_codes.php>. Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Source: Kamchatkan Volcanic Eruption Response Team http://www.kcs.iks.ru/ivs/kvert/updates.shtml Karymsky Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13= KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m During 27-28 February, no surface lava flows were visible on Kilauea's Pulama pali fault scarp, which had been the case since 8 February. Lava flowed into the ocean at the East Lae`apuki entry. Background volcanic tremor was at normal levels at Kilauea's summit, with shallow earthquakes continuing to occur beneath the summit area and the upper east rift zone. Volcanic tremor reached moderate levels at Pu`u `O`o. Slight inflation and deflation occurred at the volcano. Background. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed by lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. The latest Kilauea eruption began in January 1983 along the E rift zone. This long-term ongoing eruption from Pu`u `O`o-Kupaianaha has produced lava flows that have traveled 11-12 km from the vents to the sea, paving about 104 km2 of land on the S flank of Kilauea and building more than 200 hectares of new land. Source: US Geological Survey Hawaiian Volcano Observatory http://volcanoes.usgs.gov/update.html Kilauea information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01- MAYON southeastern Luzon, Philippines 13.257°N, 123.685°E; summit elev. 2,462 m PHIVOLCS reported that about nine earthquakes related to explosive activity took place at Mayon around 23 February. Cloudy conditions prevented observations of the volcano, but seismic events probably accompanied minor ash explosions. This was supported by reports from residents near the volcano who heard rumbling. The seismic network also recorded two low-frequency volcanic earthquakes associated with shallow magma movement. The sulfur-dioxide flux averaged 1,740 metric tons per day (t/d), similar to values obtained during the last measurement on 28 November 2005. The flux was well above the usual 500 t/d measured at the volcano. Mayon remained at Alert Level 2, with a 6-km- radius Permanent Danger Zone in effect. Background. The beautifully symmetrical Mayon volcano, which rises to 2,462 m above the Albay Gulf, is the Philippines' most active volcano. The structurally simple volcano has steep upper slopes that average 35-40° and is capped by a small summit crater. The historical eruptions of this basaltic- andesitic volcano date back to 1616 and range from Strombolian to basaltic Plinian. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. Mayon's most violent eruption, in 1814, killed more than 1,200 people and devastated several towns. Eruptions that began in February 2000 led PHIVOLCS to recommend on 23 February the evacuation of people within a radius of 7 km from the summit in the SE and within a 6 km radius for the rest of the volcano. Source: Philippine Institute of Volcanology and Seismology http://www.phivolcs.dost.gov.ph/ Mayon Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0703-03= POPOCATÉPETL México 19.02°N, 98.62°W; summit elev. 5,426 m During 22-28 February, small steam-and-gas emissions occurred at Popocatépetl. Airphotos taken on 10 February showed a 130-m-diameter lava dome at the bottom of the crater. Background. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second- highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. Sources: Centro Nacional de Prevencion de Desastres http://www.cenapred.unam.mx/, Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html Popocatépetl Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1401-09= SANTA ANA El Salvador 13.853°N, 89.630°W; summit elev. 2,365 m During 17-24 February, volcanic activity was at moderate levels at Santa Ana. Seismicity was relatively stable, and steam plumes rose to low levels above the volcano. The sulfur-dioxide flux was similar to measurements from previous weeks. The level of water in the lagoon within the crater decreased significantly. The Alert Level at Santa Ana remained at Red, the highest level, within a 5-km radius around the volcano's summit crater. Background. Santa Ana, El Salvador's highest volcano, is a massive stratovolcano immediately W of Coatepeque caldera. Collapse of the volcano during the late Pleistocene or early Holocene produced a massive debris avalanche that swept into the Pacific, forming the Acajutla Peninsula. Reconstruction of the volcano rapidly filled the collapse scarp. The broad summit of the volcano is cut by several crescentic craters, and a series of parasitic vents and cones have formed along a 20-km-long fissure system that extends from near the town of Chalchuapa NNW of the volcano to the San Marcelino and Cerro Chino cinder cones on the SE flank. Historical activity, largely consisting of small-to-moderate explosive eruptions from both summit and flank vents, has been documented since the 16th century. The San Marcelino cinder cone on the SE flank produced a lava flow in 1722 that traveled 11 km to the E. Source: Servicio Nacional de Estudios Territoriales http://www.snet.gob.sv/ Santa Ana Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1403-02= SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev. 1,052 m Photographs of Soufrière Hills taken during 17-24 February confirmed ongoing lava-dome growth. The newest lobe, which appeared on the dome's NW side on 10 February, continued to grow on all sides. It appeared to have filled in the gap between the lava dome and the N and W crater walls. It also grew significantly to the E, overtopping the older lobe by the end of the report period. After 22 February, incandescent rockfalls were visible at night, coursing down the N,E, and SW sides of the dome and into the Tar River Valley. The sulfur-dioxide flux was low, with an average of 286 metric tons per day. Background. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the east, was formed during an eruption about 4000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Sources: Montserrat Volcano Observatory http://www.mvo.ms/, Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html Soufrière Hills Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05= ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m Growth of the new lava dome inside the crater of Mount St. Helens continued during 22-27 February, accompanied by low rates of seismicity, low emissions of steam and volcanic gases, and minor production of ash. St Helens remained at Volcano Advisory (Alert Level 2); aviation color code Orange. Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers. Source: USGS Cascades Volcano Observatory http://vulcan.wr.usgs.gov/Volcanoes/MSH/CurrentActivity/framework.html St. Helens Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05- SUWANOSE-JIMA Ryukyu Islands, Japan 29.53°N, 129.72°E; summit elev. 799 m Based on information from JMA, the Tokyo VAAC reported that during 22-24 February several small eruptions occurred at Suwanose-jima. The highest rising plume reached ~3 km (10,000 ft) a.s.l. after an eruption on 23 February. Background. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for around 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884. Source: Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html Suwanose-jima Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0802-03= TUNGURAHUA Ecuador 1.47°S, 78.44°W; summit elev. 5,023 m; All times are local (= UTC - 5 hours) Activity at Tungurahua during 26-27 February consisted of emissions of steam and gas, with low ash content. An explosion on the 26th at 1600 produced a NW- drifting gas-and-ash plume to ~3 km above the volcano (or ~26,300 ft a.s.l.). After noon on the 27th, an emission of steam and gas with low ash content rose to ~1 km above the volcano (or 19,750 ft a.s.l.) and drifted NW. Background. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have been restricted to the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Sources: Instituto Geofisico-Escuela Poltecnica Nacional http://www.igepn.edu.ec/vulcanologia/tungurahua/actividad/informet.htm, Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html Tungurahua Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-08= ********************************************************* Gari Mayberry US Geological Survey/Global Volcanism Program Smithsonian Institution National Museum of Natural History MRC-119 Dept. of Mineral Sciences Washington, DC 20560-0119 Phone: 202.633.1805 Fax: 202.357.2476 mayberry@xxxxxxxxxxxxxx http://www.volcano.si.edu/reports/usgs/ ********************************************************** ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================