On Mon, Dec 20, 2010 at 11:40:44PM +0100, Krzysztof Halasa wrote: > Delete unused file common/dlmalloc.src. > Or is there any reason to have it here? The reason probably is to keep the original code the implementation is derived from around. I agree that we can remove it though, we have our history in git and even this file can be restored from the history. Sascha > > Signed-off-by: Krzysztof HaÅasa <khc@xxxxxxxxx> > > diff --git a/common/dlmalloc.src b/common/dlmalloc.src > deleted file mode 100644 > index 32a38bc..0000000 > --- a/common/dlmalloc.src > +++ /dev/null > @@ -1,3265 +0,0 @@ > -/* ---------- To make a malloc.h, start cutting here ------------ */ > - > -/* > - A version of malloc/free/realloc written by Doug Lea and released to the > - public domain. Send questions/comments/complaints/performance data > - to dl@xxxxxxxxxxxxx > - > -* VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee) > - > - Note: There may be an updated version of this malloc obtainable at > - ftp://g.oswego.edu/pub/misc/malloc.c > - Check before installing! > - > -* Why use this malloc? > - > - This is not the fastest, most space-conserving, most portable, or > - most tunable malloc ever written. However it is among the fastest > - while also being among the most space-conserving, portable and tunable. > - Consistent balance across these factors results in a good general-purpose > - allocator. For a high-level description, see > - http://g.oswego.edu/dl/html/malloc.html > - > -* Synopsis of public routines > - > - (Much fuller descriptions are contained in the program documentation below.) > - > - malloc(size_t n); > - Return a pointer to a newly allocated chunk of at least n bytes, or null > - if no space is available. > - free(Void_t* p); > - Release the chunk of memory pointed to by p, or no effect if p is null. > - realloc(Void_t* p, size_t n); > - Return a pointer to a chunk of size n that contains the same data > - as does chunk p up to the minimum of (n, p's size) bytes, or null > - if no space is available. The returned pointer may or may not be > - the same as p. If p is null, equivalent to malloc. Unless the > - #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a > - size argument of zero (re)allocates a minimum-sized chunk. > - memalign(size_t alignment, size_t n); > - Return a pointer to a newly allocated chunk of n bytes, aligned > - in accord with the alignment argument, which must be a power of > - two. > - valloc(size_t n); > - Equivalent to memalign(pagesize, n), where pagesize is the page > - size of the system (or as near to this as can be figured out from > - all the includes/defines below.) > - pvalloc(size_t n); > - Equivalent to valloc(minimum-page-that-holds(n)), that is, > - round up n to nearest pagesize. > - calloc(size_t unit, size_t quantity); > - Returns a pointer to quantity * unit bytes, with all locations > - set to zero. > - cfree(Void_t* p); > - Equivalent to free(p). > - malloc_trim(size_t pad); > - Release all but pad bytes of freed top-most memory back > - to the system. Return 1 if successful, else 0. > - malloc_usable_size(Void_t* p); > - Report the number usable allocated bytes associated with allocated > - chunk p. This may or may not report more bytes than were requested, > - due to alignment and minimum size constraints. > - malloc_stats(); > - Prints brief summary statistics on stderr. > - mallinfo() > - Returns (by copy) a struct containing various summary statistics. > - mallopt(int parameter_number, int parameter_value) > - Changes one of the tunable parameters described below. Returns > - 1 if successful in changing the parameter, else 0. > - > -* Vital statistics: > - > - Alignment: 8-byte > - 8 byte alignment is currently hardwired into the design. This > - seems to suffice for all current machines and C compilers. > - > - Assumed pointer representation: 4 or 8 bytes > - Code for 8-byte pointers is untested by me but has worked > - reliably by Wolfram Gloger, who contributed most of the > - changes supporting this. > - > - Assumed size_t representation: 4 or 8 bytes > - Note that size_t is allowed to be 4 bytes even if pointers are 8. > - > - Minimum overhead per allocated chunk: 4 or 8 bytes > - Each malloced chunk has a hidden overhead of 4 bytes holding size > - and status information. > - > - Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) > - 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) > - > - When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte > - ptrs but 4 byte size) or 24 (for 8/8) additional bytes are > - needed; 4 (8) for a trailing size field > - and 8 (16) bytes for free list pointers. Thus, the minimum > - allocatable size is 16/24/32 bytes. > - > - Even a request for zero bytes (i.e., malloc(0)) returns a > - pointer to something of the minimum allocatable size. > - > - Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes > - 8-byte size_t: 2^63 - 16 bytes > - > - It is assumed that (possibly signed) size_t bit values suffice to > - represent chunk sizes. `Possibly signed' is due to the fact > - that `size_t' may be defined on a system as either a signed or > - an unsigned type. To be conservative, values that would appear > - as negative numbers are avoided. > - Requests for sizes with a negative sign bit when the request > - size is treaded as a long will return null. > - > - Maximum overhead wastage per allocated chunk: normally 15 bytes > - > - Alignnment demands, plus the minimum allocatable size restriction > - make the normal worst-case wastage 15 bytes (i.e., up to 15 > - more bytes will be allocated than were requested in malloc), with > - two exceptions: > - 1. Because requests for zero bytes allocate non-zero space, > - the worst case wastage for a request of zero bytes is 24 bytes. > - 2. For requests >= mmap_threshold that are serviced via > - mmap(), the worst case wastage is 8 bytes plus the remainder > - from a system page (the minimal mmap unit); typically 4096 bytes. > - > -* Limitations > - > - Here are some features that are NOT currently supported > - > - * No user-definable hooks for callbacks and the like. > - * No automated mechanism for fully checking that all accesses > - to malloced memory stay within their bounds. > - * No support for compaction. > - > -* Synopsis of compile-time options: > - > - People have reported using previous versions of this malloc on all > - versions of Unix, sometimes by tweaking some of the defines > - below. It has been tested most extensively on Solaris and > - Linux. It is also reported to work on WIN32 platforms. > - People have also reported adapting this malloc for use in > - stand-alone embedded systems. > - > - The implementation is in straight, hand-tuned ANSI C. Among other > - consequences, it uses a lot of macros. Because of this, to be at > - all usable, this code should be compiled using an optimizing compiler > - (for example gcc -O2) that can simplify expressions and control > - paths. > - > - __STD_C (default: derived from C compiler defines) > - Nonzero if using ANSI-standard C compiler, a C++ compiler, or > - a C compiler sufficiently close to ANSI to get away with it. > - DEBUG (default: NOT defined) > - Define to enable debugging. Adds fairly extensive assertion-based > - checking to help track down memory errors, but noticeably slows down > - execution. > - REALLOC_ZERO_BYTES_FREES (default: NOT defined) > - Define this if you think that realloc(p, 0) should be equivalent > - to free(p). Otherwise, since malloc returns a unique pointer for > - malloc(0), so does realloc(p, 0). > - HAVE_MEMCPY (default: defined) > - Define if you are not otherwise using ANSI STD C, but still > - have memcpy and memset in your C library and want to use them. > - Otherwise, simple internal versions are supplied. > - USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise) > - Define as 1 if you want the C library versions of memset and > - memcpy called in realloc and calloc (otherwise macro versions are used). > - At least on some platforms, the simple macro versions usually > - outperform libc versions. > - HAVE_MMAP (default: defined as 1) > - Define to non-zero to optionally make malloc() use mmap() to > - allocate very large blocks. > - HAVE_MREMAP (default: defined as 0 unless Linux libc set) > - Define to non-zero to optionally make realloc() use mremap() to > - reallocate very large blocks. > - malloc_getpagesize (default: derived from system #includes) > - Either a constant or routine call returning the system page size. > - HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined) > - Optionally define if you are on a system with a /usr/include/malloc.h > - that declares struct mallinfo. It is not at all necessary to > - define this even if you do, but will ensure consistency. > - INTERNAL_SIZE_T (default: size_t) > - Define to a 32-bit type (probably `unsigned int') if you are on a > - 64-bit machine, yet do not want or need to allow malloc requests of > - greater than 2^31 to be handled. This saves space, especially for > - very small chunks. > - INTERNAL_LINUX_C_LIB (default: NOT defined) > - Defined only when compiled as part of Linux libc. > - Also note that there is some odd internal name-mangling via defines > - (for example, internally, `malloc' is named `mALLOc') needed > - when compiling in this case. These look funny but don't otherwise > - affect anything. > - WIN32 (default: undefined) > - Define this on MS win (95, nt) platforms to compile in sbrk emulation. > - LACKS_UNISTD_H (default: undefined if not WIN32) > - Define this if your system does not have a <unistd.h>. > - LACKS_SYS_PARAM_H (default: undefined if not WIN32) > - Define this if your system does not have a <sys/param.h>. > - MORECORE (default: sbrk) > - The name of the routine to call to obtain more memory from the system. > - MORECORE_FAILURE (default: -1) > - The value returned upon failure of MORECORE. > - MORECORE_CLEARS (default 1) > - True (1) if the routine mapped to MORECORE zeroes out memory (which > - holds for sbrk). > - DEFAULT_TRIM_THRESHOLD > - DEFAULT_TOP_PAD > - DEFAULT_MMAP_THRESHOLD > - DEFAULT_MMAP_MAX > - Default values of tunable parameters (described in detail below) > - controlling interaction with host system routines (sbrk, mmap, etc). > - These values may also be changed dynamically via mallopt(). The > - preset defaults are those that give best performance for typical > - programs/systems. > - USE_DL_PREFIX (default: undefined) > - Prefix all public routines with the string 'dl'. Useful to > - quickly avoid procedure declaration conflicts and linker symbol > - conflicts with existing memory allocation routines. > - > - > -*/ > - > - > - > - > -/* Preliminaries */ > - > -#ifndef __STD_C > -#ifdef __STDC__ > -#define __STD_C 1 > -#else > -#if __cplusplus > -#define __STD_C 1 > -#else > -#define __STD_C 0 > -#endif /*__cplusplus*/ > -#endif /*__STDC__*/ > -#endif /*__STD_C*/ > - > -#ifndef Void_t > -#if (__STD_C || defined(WIN32)) > -#define Void_t void > -#else > -#define Void_t char > -#endif > -#endif /*Void_t*/ > - > -#if __STD_C > -#include <stddef.h> /* for size_t */ > -#else > -#include <sys/types.h> > -#endif > - > -#ifdef __cplusplus > -extern "C" { > -#endif > - > -#include <stdio.h> /* needed for malloc_stats */ > - > - > -/* > - Compile-time options > -*/ > - > - > -/* > - Debugging: > - > - Because freed chunks may be overwritten with link fields, this > - malloc will often die when freed memory is overwritten by user > - programs. This can be very effective (albeit in an annoying way) > - in helping track down dangling pointers. > - > - If you compile with -DDEBUG, a number of assertion checks are > - enabled that will catch more memory errors. You probably won't be > - able to make much sense of the actual assertion errors, but they > - should help you locate incorrectly overwritten memory. The > - checking is fairly extensive, and will slow down execution > - noticeably. Calling malloc_stats or mallinfo with DEBUG set will > - attempt to check every non-mmapped allocated and free chunk in the > - course of computing the summmaries. (By nature, mmapped regions > - cannot be checked very much automatically.) > - > - Setting DEBUG may also be helpful if you are trying to modify > - this code. The assertions in the check routines spell out in more > - detail the assumptions and invariants underlying the algorithms. > - > -*/ > - > -#if DEBUG > -#include <assert.h> > -#else > -#define assert(x) ((void)0) > -#endif > - > - > -/* > - INTERNAL_SIZE_T is the word-size used for internal bookkeeping > - of chunk sizes. On a 64-bit machine, you can reduce malloc > - overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' > - at the expense of not being able to handle requests greater than > - 2^31. This limitation is hardly ever a concern; you are encouraged > - to set this. However, the default version is the same as size_t. > -*/ > - > -#ifndef INTERNAL_SIZE_T > -#define INTERNAL_SIZE_T size_t > -#endif > - > -/* > - REALLOC_ZERO_BYTES_FREES should be set if a call to > - realloc with zero bytes should be the same as a call to free. > - Some people think it should. Otherwise, since this malloc > - returns a unique pointer for malloc(0), so does realloc(p, 0). > -*/ > - > - > -/* #define REALLOC_ZERO_BYTES_FREES */ > - > - > -/* > - WIN32 causes an emulation of sbrk to be compiled in > - mmap-based options are not currently supported in WIN32. > -*/ > - > -/* #define WIN32 */ > -#ifdef WIN32 > -#define MORECORE wsbrk > -#define HAVE_MMAP 0 > - > -#define LACKS_UNISTD_H > -#define LACKS_SYS_PARAM_H > - > -/* > - Include 'windows.h' to get the necessary declarations for the > - Microsoft Visual C++ data structures and routines used in the 'sbrk' > - emulation. > - > - Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft > - Visual C++ header files are included. > -*/ > -#define WIN32_LEAN_AND_MEAN > -#include <windows.h> > -#endif > - > - > -/* > - HAVE_MEMCPY should be defined if you are not otherwise using > - ANSI STD C, but still have memcpy and memset in your C library > - and want to use them in calloc and realloc. Otherwise simple > - macro versions are defined here. > - > - USE_MEMCPY should be defined as 1 if you actually want to > - have memset and memcpy called. People report that the macro > - versions are often enough faster than libc versions on many > - systems that it is better to use them. > - > -*/ > - > -#define HAVE_MEMCPY > - > -#ifndef USE_MEMCPY > -#ifdef HAVE_MEMCPY > -#define USE_MEMCPY 1 > -#else > -#define USE_MEMCPY 0 > -#endif > -#endif > - > -#if (__STD_C || defined(HAVE_MEMCPY)) > - > -#if __STD_C > -void* memset(void*, int, size_t); > -void* memcpy(void*, const void*, size_t); > -#else > -#ifdef WIN32 > -/* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */ > -/* 'windows.h' */ > -#else > -Void_t* memset(); > -Void_t* memcpy(); > -#endif > -#endif > -#endif > - > -#if USE_MEMCPY > - > -/* The following macros are only invoked with (2n+1)-multiples of > - INTERNAL_SIZE_T units, with a positive integer n. This is exploited > - for fast inline execution when n is small. */ > - > -#define MALLOC_ZERO(charp, nbytes) \ > -do { \ > - INTERNAL_SIZE_T mzsz = (nbytes); \ > - if(mzsz <= 9*sizeof(mzsz)) { \ > - INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \ > - if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \ > - *mz++ = 0; \ > - if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \ > - *mz++ = 0; \ > - if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \ > - *mz++ = 0; }}} \ > - *mz++ = 0; \ > - *mz++ = 0; \ > - *mz = 0; \ > - } else memset((charp), 0, mzsz); \ > -} while(0) > - > -#define MALLOC_COPY(dest,src,nbytes) \ > -do { \ > - INTERNAL_SIZE_T mcsz = (nbytes); \ > - if(mcsz <= 9*sizeof(mcsz)) { \ > - INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \ > - INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \ > - if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ > - *mcdst++ = *mcsrc++; \ > - if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ > - *mcdst++ = *mcsrc++; \ > - if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ > - *mcdst++ = *mcsrc++; }}} \ > - *mcdst++ = *mcsrc++; \ > - *mcdst++ = *mcsrc++; \ > - *mcdst = *mcsrc ; \ > - } else memcpy(dest, src, mcsz); \ > -} while(0) > - > -#else /* !USE_MEMCPY */ > - > -/* Use Duff's device for good zeroing/copying performance. */ > - > -#define MALLOC_ZERO(charp, nbytes) \ > -do { \ > - INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ > - long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ > - if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ > - switch (mctmp) { \ > - case 0: for(;;) { *mzp++ = 0; \ > - case 7: *mzp++ = 0; \ > - case 6: *mzp++ = 0; \ > - case 5: *mzp++ = 0; \ > - case 4: *mzp++ = 0; \ > - case 3: *mzp++ = 0; \ > - case 2: *mzp++ = 0; \ > - case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ > - } \ > -} while(0) > - > -#define MALLOC_COPY(dest,src,nbytes) \ > -do { \ > - INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ > - INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ > - long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ > - if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ > - switch (mctmp) { \ > - case 0: for(;;) { *mcdst++ = *mcsrc++; \ > - case 7: *mcdst++ = *mcsrc++; \ > - case 6: *mcdst++ = *mcsrc++; \ > - case 5: *mcdst++ = *mcsrc++; \ > - case 4: *mcdst++ = *mcsrc++; \ > - case 3: *mcdst++ = *mcsrc++; \ > - case 2: *mcdst++ = *mcsrc++; \ > - case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ > - } \ > -} while(0) > - > -#endif > - > - > -/* > - Define HAVE_MMAP to optionally make malloc() use mmap() to > - allocate very large blocks. These will be returned to the > - operating system immediately after a free(). > -*/ > - > -#ifndef HAVE_MMAP > -#define HAVE_MMAP 1 > -#endif > - > -/* > - Define HAVE_MREMAP to make realloc() use mremap() to re-allocate > - large blocks. This is currently only possible on Linux with > - kernel versions newer than 1.3.77. > -*/ > - > -#ifndef HAVE_MREMAP > -#ifdef INTERNAL_LINUX_C_LIB > -#define HAVE_MREMAP 1 > -#else > -#define HAVE_MREMAP 0 > -#endif > -#endif > - > -#if HAVE_MMAP > - > -#include <unistd.h> > -#include <fcntl.h> > -#include <sys/mman.h> > - > -#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) > -#define MAP_ANONYMOUS MAP_ANON > -#endif > - > -#endif /* HAVE_MMAP */ > - > -/* > - Access to system page size. To the extent possible, this malloc > - manages memory from the system in page-size units. > - > - The following mechanics for getpagesize were adapted from > - bsd/gnu getpagesize.h > -*/ > - > -#ifndef LACKS_UNISTD_H > -# include <unistd.h> > -#endif > - > -#ifndef malloc_getpagesize > -# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ > -# ifndef _SC_PAGE_SIZE > -# define _SC_PAGE_SIZE _SC_PAGESIZE > -# endif > -# endif > -# ifdef _SC_PAGE_SIZE > -# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) > -# else > -# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) > - extern size_t getpagesize(); > -# define malloc_getpagesize getpagesize() > -# else > -# ifdef WIN32 > -# define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */ > -# else > -# ifndef LACKS_SYS_PARAM_H > -# include <sys/param.h> > -# endif > -# ifdef EXEC_PAGESIZE > -# define malloc_getpagesize EXEC_PAGESIZE > -# else > -# ifdef NBPG > -# ifndef CLSIZE > -# define malloc_getpagesize NBPG > -# else > -# define malloc_getpagesize (NBPG * CLSIZE) > -# endif > -# else > -# ifdef NBPC > -# define malloc_getpagesize NBPC > -# else > -# ifdef PAGESIZE > -# define malloc_getpagesize PAGESIZE > -# else > -# define malloc_getpagesize (4096) /* just guess */ > -# endif > -# endif > -# endif > -# endif > -# endif > -# endif > -# endif > -#endif > - > - > -/* > - > - This version of malloc supports the standard SVID/XPG mallinfo > - routine that returns a struct containing the same kind of > - information you can get from malloc_stats. It should work on > - any SVID/XPG compliant system that has a /usr/include/malloc.h > - defining struct mallinfo. (If you'd like to install such a thing > - yourself, cut out the preliminary declarations as described above > - and below and save them in a malloc.h file. But there's no > - compelling reason to bother to do this.) > - > - The main declaration needed is the mallinfo struct that is returned > - (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a > - bunch of fields, most of which are not even meaningful in this > - version of malloc. Some of these fields are are instead filled by > - mallinfo() with other numbers that might possibly be of interest. > - > - HAVE_USR_INCLUDE_MALLOC_H should be set if you have a > - /usr/include/malloc.h file that includes a declaration of struct > - mallinfo. If so, it is included; else an SVID2/XPG2 compliant > - version is declared below. These must be precisely the same for > - mallinfo() to work. > - > -*/ > - > -/* #define HAVE_USR_INCLUDE_MALLOC_H */ > - > -#if HAVE_USR_INCLUDE_MALLOC_H > -#include "/usr/include/malloc.h" > -#else > - > -/* SVID2/XPG mallinfo structure */ > - > -struct mallinfo { > - int arena; /* total space allocated from system */ > - int ordblks; /* number of non-inuse chunks */ > - int smblks; /* unused -- always zero */ > - int hblks; /* number of mmapped regions */ > - int hblkhd; /* total space in mmapped regions */ > - int usmblks; /* unused -- always zero */ > - int fsmblks; /* unused -- always zero */ > - int uordblks; /* total allocated space */ > - int fordblks; /* total non-inuse space */ > - int keepcost; /* top-most, releasable (via malloc_trim) space */ > -}; > - > -/* SVID2/XPG mallopt options */ > - > -#define M_MXFAST 1 /* UNUSED in this malloc */ > -#define M_NLBLKS 2 /* UNUSED in this malloc */ > -#define M_GRAIN 3 /* UNUSED in this malloc */ > -#define M_KEEP 4 /* UNUSED in this malloc */ > - > -#endif > - > -/* mallopt options that actually do something */ > - > -#define M_TRIM_THRESHOLD -1 > -#define M_TOP_PAD -2 > -#define M_MMAP_THRESHOLD -3 > -#define M_MMAP_MAX -4 > - > - > -#ifndef DEFAULT_TRIM_THRESHOLD > -#define DEFAULT_TRIM_THRESHOLD (128 * 1024) > -#endif > - > -/* > - M_TRIM_THRESHOLD is the maximum amount of unused top-most memory > - to keep before releasing via malloc_trim in free(). > - > - Automatic trimming is mainly useful in long-lived programs. > - Because trimming via sbrk can be slow on some systems, and can > - sometimes be wasteful (in cases where programs immediately > - afterward allocate more large chunks) the value should be high > - enough so that your overall system performance would improve by > - releasing. > - > - The trim threshold and the mmap control parameters (see below) > - can be traded off with one another. Trimming and mmapping are > - two different ways of releasing unused memory back to the > - system. Between these two, it is often possible to keep > - system-level demands of a long-lived program down to a bare > - minimum. For example, in one test suite of sessions measuring > - the XF86 X server on Linux, using a trim threshold of 128K and a > - mmap threshold of 192K led to near-minimal long term resource > - consumption. > - > - If you are using this malloc in a long-lived program, it should > - pay to experiment with these values. As a rough guide, you > - might set to a value close to the average size of a process > - (program) running on your system. Releasing this much memory > - would allow such a process to run in memory. Generally, it's > - worth it to tune for trimming rather tham memory mapping when a > - program undergoes phases where several large chunks are > - allocated and released in ways that can reuse each other's > - storage, perhaps mixed with phases where there are no such > - chunks at all. And in well-behaved long-lived programs, > - controlling release of large blocks via trimming versus mapping > - is usually faster. > - > - However, in most programs, these parameters serve mainly as > - protection against the system-level effects of carrying around > - massive amounts of unneeded memory. Since frequent calls to > - sbrk, mmap, and munmap otherwise degrade performance, the default > - parameters are set to relatively high values that serve only as > - safeguards. > - > - The default trim value is high enough to cause trimming only in > - fairly extreme (by current memory consumption standards) cases. > - It must be greater than page size to have any useful effect. To > - disable trimming completely, you can set to (unsigned long)(-1); > - > - > -*/ > - > - > -#ifndef DEFAULT_TOP_PAD > -#define DEFAULT_TOP_PAD (0) > -#endif > - > -/* > - M_TOP_PAD is the amount of extra `padding' space to allocate or > - retain whenever sbrk is called. It is used in two ways internally: > - > - * When sbrk is called to extend the top of the arena to satisfy > - a new malloc request, this much padding is added to the sbrk > - request. > - > - * When malloc_trim is called automatically from free(), > - it is used as the `pad' argument. > - > - In both cases, the actual amount of padding is rounded > - so that the end of the arena is always a system page boundary. > - > - The main reason for using padding is to avoid calling sbrk so > - often. Having even a small pad greatly reduces the likelihood > - that nearly every malloc request during program start-up (or > - after trimming) will invoke sbrk, which needlessly wastes > - time. > - > - Automatic rounding-up to page-size units is normally sufficient > - to avoid measurable overhead, so the default is 0. However, in > - systems where sbrk is relatively slow, it can pay to increase > - this value, at the expense of carrying around more memory than > - the program needs. > - > -*/ > - > - > -#ifndef DEFAULT_MMAP_THRESHOLD > -#define DEFAULT_MMAP_THRESHOLD (128 * 1024) > -#endif > - > -/* > - > - M_MMAP_THRESHOLD is the request size threshold for using mmap() > - to service a request. Requests of at least this size that cannot > - be allocated using already-existing space will be serviced via mmap. > - (If enough normal freed space already exists it is used instead.) > - > - Using mmap segregates relatively large chunks of memory so that > - they can be individually obtained and released from the host > - system. A request serviced through mmap is never reused by any > - other request (at least not directly; the system may just so > - happen to remap successive requests to the same locations). > - > - Segregating space in this way has the benefit that mmapped space > - can ALWAYS be individually released back to the system, which > - helps keep the system level memory demands of a long-lived > - program low. Mapped memory can never become `locked' between > - other chunks, as can happen with normally allocated chunks, which > - menas that even trimming via malloc_trim would not release them. > - > - However, it has the disadvantages that: > - > - 1. The space cannot be reclaimed, consolidated, and then > - used to service later requests, as happens with normal chunks. > - 2. It can lead to more wastage because of mmap page alignment > - requirements > - 3. It causes malloc performance to be more dependent on host > - system memory management support routines which may vary in > - implementation quality and may impose arbitrary > - limitations. Generally, servicing a request via normal > - malloc steps is faster than going through a system's mmap. > - > - All together, these considerations should lead you to use mmap > - only for relatively large requests. > - > - > -*/ > - > - > -#ifndef DEFAULT_MMAP_MAX > -#if HAVE_MMAP > -#define DEFAULT_MMAP_MAX (64) > -#else > -#define DEFAULT_MMAP_MAX (0) > -#endif > -#endif > - > -/* > - M_MMAP_MAX is the maximum number of requests to simultaneously > - service using mmap. This parameter exists because: > - > - 1. Some systems have a limited number of internal tables for > - use by mmap. > - 2. In most systems, overreliance on mmap can degrade overall > - performance. > - 3. If a program allocates many large regions, it is probably > - better off using normal sbrk-based allocation routines that > - can reclaim and reallocate normal heap memory. Using a > - small value allows transition into this mode after the > - first few allocations. > - > - Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, > - the default value is 0, and attempts to set it to non-zero values > - in mallopt will fail. > -*/ > - > - > -/* > - USE_DL_PREFIX will prefix all public routines with the string 'dl'. > - Useful to quickly avoid procedure declaration conflicts and linker > - symbol conflicts with existing memory allocation routines. > - > -*/ > - > -/* #define USE_DL_PREFIX */ > - > - > -/* > - > - Special defines for linux libc > - > - Except when compiled using these special defines for Linux libc > - using weak aliases, this malloc is NOT designed to work in > - multithreaded applications. No semaphores or other concurrency > - control are provided to ensure that multiple malloc or free calls > - don't run at the same time, which could be disasterous. A single > - semaphore could be used across malloc, realloc, and free (which is > - essentially the effect of the linux weak alias approach). It would > - be hard to obtain finer granularity. > - > -*/ > - > - > -#ifdef INTERNAL_LINUX_C_LIB > - > -#if __STD_C > - > -Void_t * __default_morecore_init (ptrdiff_t); > -Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init; > - > -#else > - > -Void_t * __default_morecore_init (); > -Void_t *(*__morecore)() = __default_morecore_init; > - > -#endif > - > -#define MORECORE (*__morecore) > -#define MORECORE_FAILURE 0 > -#define MORECORE_CLEARS 1 > - > -#else /* INTERNAL_LINUX_C_LIB */ > - > -#if __STD_C > -extern Void_t* sbrk(ptrdiff_t); > -#else > -extern Void_t* sbrk(); > -#endif > - > -#ifndef MORECORE > -#define MORECORE sbrk > -#endif > - > -#ifndef MORECORE_FAILURE > -#define MORECORE_FAILURE -1 > -#endif > - > -#ifndef MORECORE_CLEARS > -#define MORECORE_CLEARS 1 > -#endif > - > -#endif /* INTERNAL_LINUX_C_LIB */ > - > -#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__) > - > -#define cALLOc __libc_calloc > -#define fREe __libc_free > -#define mALLOc __libc_malloc > -#define mEMALIGn __libc_memalign > -#define rEALLOc __libc_realloc > -#define vALLOc __libc_valloc > -#define pvALLOc __libc_pvalloc > -#define mALLINFo __libc_mallinfo > -#define mALLOPt __libc_mallopt > - > -#pragma weak calloc = __libc_calloc > -#pragma weak free = __libc_free > -#pragma weak cfree = __libc_free > -#pragma weak malloc = __libc_malloc > -#pragma weak memalign = __libc_memalign > -#pragma weak realloc = __libc_realloc > -#pragma weak valloc = __libc_valloc > -#pragma weak pvalloc = __libc_pvalloc > -#pragma weak mallinfo = __libc_mallinfo > -#pragma weak mallopt = __libc_mallopt > - > -#else > - > -#ifdef USE_DL_PREFIX > -#define cALLOc dlcalloc > -#define fREe dlfree > -#define mALLOc dlmalloc > -#define mEMALIGn dlmemalign > -#define rEALLOc dlrealloc > -#define vALLOc dlvalloc > -#define pvALLOc dlpvalloc > -#define mALLINFo dlmallinfo > -#define mALLOPt dlmallopt > -#else /* USE_DL_PREFIX */ > -#define cALLOc calloc > -#define fREe free > -#define mALLOc malloc > -#define mEMALIGn memalign > -#define rEALLOc realloc > -#define vALLOc valloc > -#define pvALLOc pvalloc > -#define mALLINFo mallinfo > -#define mALLOPt mallopt > -#endif /* USE_DL_PREFIX */ > - > -#endif > - > -/* Public routines */ > - > -#if __STD_C > - > -Void_t* mALLOc(size_t); > -void fREe(Void_t*); > -Void_t* rEALLOc(Void_t*, size_t); > -Void_t* mEMALIGn(size_t, size_t); > -Void_t* vALLOc(size_t); > -Void_t* pvALLOc(size_t); > -Void_t* cALLOc(size_t, size_t); > -void cfree(Void_t*); > -int malloc_trim(size_t); > -size_t malloc_usable_size(Void_t*); > -void malloc_stats(); > -int mALLOPt(int, int); > -struct mallinfo mALLINFo(void); > -#else > -Void_t* mALLOc(); > -void fREe(); > -Void_t* rEALLOc(); > -Void_t* mEMALIGn(); > -Void_t* vALLOc(); > -Void_t* pvALLOc(); > -Void_t* cALLOc(); > -void cfree(); > -int malloc_trim(); > -size_t malloc_usable_size(); > -void malloc_stats(); > -int mALLOPt(); > -struct mallinfo mALLINFo(); > -#endif > - > - > -#ifdef __cplusplus > -}; /* end of extern "C" */ > -#endif > - > -/* ---------- To make a malloc.h, end cutting here ------------ */ > - > - > -/* > - Emulation of sbrk for WIN32 > - All code within the ifdef WIN32 is untested by me. > - > - Thanks to Martin Fong and others for supplying this. > -*/ > - > - > -#ifdef WIN32 > - > -#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ > -~(malloc_getpagesize-1)) > -#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) > - > -/* resrve 64MB to insure large contiguous space */ > -#define RESERVED_SIZE (1024*1024*64) > -#define NEXT_SIZE (2048*1024) > -#define TOP_MEMORY ((unsigned long)2*1024*1024*1024) > - > -struct GmListElement; > -typedef struct GmListElement GmListElement; > - > -struct GmListElement > -{ > - GmListElement* next; > - void* base; > -}; > - > -static GmListElement* head = 0; > -static unsigned int gNextAddress = 0; > -static unsigned int gAddressBase = 0; > -static unsigned int gAllocatedSize = 0; > - > -static > -GmListElement* makeGmListElement (void* bas) > -{ > - GmListElement* this; > - this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); > - assert (this); > - if (this) > - { > - this->base = bas; > - this->next = head; > - head = this; > - } > - return this; > -} > - > -void gcleanup () > -{ > - BOOL rval; > - assert ( (head == NULL) || (head->base == (void*)gAddressBase)); > - if (gAddressBase && (gNextAddress - gAddressBase)) > - { > - rval = VirtualFree ((void*)gAddressBase, > - gNextAddress - gAddressBase, > - MEM_DECOMMIT); > - assert (rval); > - } > - while (head) > - { > - GmListElement* next = head->next; > - rval = VirtualFree (head->base, 0, MEM_RELEASE); > - assert (rval); > - LocalFree (head); > - head = next; > - } > -} > - > -static > -void* findRegion (void* start_address, unsigned long size) > -{ > - MEMORY_BASIC_INFORMATION info; > - if (size >= TOP_MEMORY) return NULL; > - > - while ((unsigned long)start_address + size < TOP_MEMORY) > - { > - VirtualQuery (start_address, &info, sizeof (info)); > - if ((info.State == MEM_FREE) && (info.RegionSize >= size)) > - return start_address; > - else > - { > - /* Requested region is not available so see if the */ > - /* next region is available. Set 'start_address' */ > - /* to the next region and call 'VirtualQuery()' */ > - /* again. */ > - > - start_address = (char*)info.BaseAddress + info.RegionSize; > - > - /* Make sure we start looking for the next region */ > - /* on the *next* 64K boundary. Otherwise, even if */ > - /* the new region is free according to */ > - /* 'VirtualQuery()', the subsequent call to */ > - /* 'VirtualAlloc()' (which follows the call to */ > - /* this routine in 'wsbrk()') will round *down* */ > - /* the requested address to a 64K boundary which */ > - /* we already know is an address in the */ > - /* unavailable region. Thus, the subsequent call */ > - /* to 'VirtualAlloc()' will fail and bring us back */ > - /* here, causing us to go into an infinite loop. */ > - > - start_address = > - (void *) AlignPage64K((unsigned long) start_address); > - } > - } > - return NULL; > - > -} > - > - > -void* wsbrk (long size) > -{ > - void* tmp; > - if (size > 0) > - { > - if (gAddressBase == 0) > - { > - gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); > - gNextAddress = gAddressBase = > - (unsigned int)VirtualAlloc (NULL, gAllocatedSize, > - MEM_RESERVE, PAGE_NOACCESS); > - } else if (AlignPage (gNextAddress + size) > (gAddressBase + > -gAllocatedSize)) > - { > - long new_size = max (NEXT_SIZE, AlignPage (size)); > - void* new_address = (void*)(gAddressBase+gAllocatedSize); > - do > - { > - new_address = findRegion (new_address, new_size); > - > - if (new_address == 0) > - return (void*)-1; > - > - gAddressBase = gNextAddress = > - (unsigned int)VirtualAlloc (new_address, new_size, > - MEM_RESERVE, PAGE_NOACCESS); > - /* repeat in case of race condition */ > - /* The region that we found has been snagged */ > - /* by another thread */ > - } > - while (gAddressBase == 0); > - > - assert (new_address == (void*)gAddressBase); > - > - gAllocatedSize = new_size; > - > - if (!makeGmListElement ((void*)gAddressBase)) > - return (void*)-1; > - } > - if ((size + gNextAddress) > AlignPage (gNextAddress)) > - { > - void* res; > - res = VirtualAlloc ((void*)AlignPage (gNextAddress), > - (size + gNextAddress - > - AlignPage (gNextAddress)), > - MEM_COMMIT, PAGE_READWRITE); > - if (res == 0) > - return (void*)-1; > - } > - tmp = (void*)gNextAddress; > - gNextAddress = (unsigned int)tmp + size; > - return tmp; > - } > - else if (size < 0) > - { > - unsigned int alignedGoal = AlignPage (gNextAddress + size); > - /* Trim by releasing the virtual memory */ > - if (alignedGoal >= gAddressBase) > - { > - VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, > - MEM_DECOMMIT); > - gNextAddress = gNextAddress + size; > - return (void*)gNextAddress; > - } > - else > - { > - VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, > - MEM_DECOMMIT); > - gNextAddress = gAddressBase; > - return (void*)-1; > - } > - } > - else > - { > - return (void*)gNextAddress; > - } > -} > - > -#endif > - > - > - > -/* > - Type declarations > -*/ > - > - > -struct malloc_chunk > -{ > - INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ > - INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ > - struct malloc_chunk* fd; /* double links -- used only if free. */ > - struct malloc_chunk* bk; > -}; > - > -typedef struct malloc_chunk* mchunkptr; > - > -/* > - > - malloc_chunk details: > - > - (The following includes lightly edited explanations by Colin Plumb.) > - > - Chunks of memory are maintained using a `boundary tag' method as > - described in e.g., Knuth or Standish. (See the paper by Paul > - Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a > - survey of such techniques.) Sizes of free chunks are stored both > - in the front of each chunk and at the end. This makes > - consolidating fragmented chunks into bigger chunks very fast. The > - size fields also hold bits representing whether chunks are free or > - in use. > - > - An allocated chunk looks like this: > - > - > - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | Size of previous chunk, if allocated | | > - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | Size of chunk, in bytes |P| > - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | User data starts here... . > - . . > - . (malloc_usable_space() bytes) . > - . | > -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | Size of chunk | > - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - > - > - Where "chunk" is the front of the chunk for the purpose of most of > - the malloc code, but "mem" is the pointer that is returned to the > - user. "Nextchunk" is the beginning of the next contiguous chunk. > - > - Chunks always begin on even word boundries, so the mem portion > - (which is returned to the user) is also on an even word boundary, and > - thus double-word aligned. > - > - Free chunks are stored in circular doubly-linked lists, and look like this: > - > - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | Size of previous chunk | > - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - `head:' | Size of chunk, in bytes |P| > - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | Forward pointer to next chunk in list | > - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | Back pointer to previous chunk in list | > - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - | Unused space (may be 0 bytes long) . > - . . > - . | > -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - `foot:' | Size of chunk, in bytes | > - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ > - > - The P (PREV_INUSE) bit, stored in the unused low-order bit of the > - chunk size (which is always a multiple of two words), is an in-use > - bit for the *previous* chunk. If that bit is *clear*, then the > - word before the current chunk size contains the previous chunk > - size, and can be used to find the front of the previous chunk. > - (The very first chunk allocated always has this bit set, > - preventing access to non-existent (or non-owned) memory.) > - > - Note that the `foot' of the current chunk is actually represented > - as the prev_size of the NEXT chunk. (This makes it easier to > - deal with alignments etc). > - > - The two exceptions to all this are > - > - 1. The special chunk `top', which doesn't bother using the > - trailing size field since there is no > - next contiguous chunk that would have to index off it. (After > - initialization, `top' is forced to always exist. If it would > - become less than MINSIZE bytes long, it is replenished via > - malloc_extend_top.) > - > - 2. Chunks allocated via mmap, which have the second-lowest-order > - bit (IS_MMAPPED) set in their size fields. Because they are > - never merged or traversed from any other chunk, they have no > - foot size or inuse information. > - > - Available chunks are kept in any of several places (all declared below): > - > - * `av': An array of chunks serving as bin headers for consolidated > - chunks. Each bin is doubly linked. The bins are approximately > - proportionally (log) spaced. There are a lot of these bins > - (128). This may look excessive, but works very well in > - practice. All procedures maintain the invariant that no > - consolidated chunk physically borders another one. Chunks in > - bins are kept in size order, with ties going to the > - approximately least recently used chunk. > - > - The chunks in each bin are maintained in decreasing sorted order by > - size. This is irrelevant for the small bins, which all contain > - the same-sized chunks, but facilitates best-fit allocation for > - larger chunks. (These lists are just sequential. Keeping them in > - order almost never requires enough traversal to warrant using > - fancier ordered data structures.) Chunks of the same size are > - linked with the most recently freed at the front, and allocations > - are taken from the back. This results in LRU or FIFO allocation > - order, which tends to give each chunk an equal opportunity to be > - consolidated with adjacent freed chunks, resulting in larger free > - chunks and less fragmentation. > - > - * `top': The top-most available chunk (i.e., the one bordering the > - end of available memory) is treated specially. It is never > - included in any bin, is used only if no other chunk is > - available, and is released back to the system if it is very > - large (see M_TRIM_THRESHOLD). > - > - * `last_remainder': A bin holding only the remainder of the > - most recently split (non-top) chunk. This bin is checked > - before other non-fitting chunks, so as to provide better > - locality for runs of sequentially allocated chunks. > - > - * Implicitly, through the host system's memory mapping tables. > - If supported, requests greater than a threshold are usually > - serviced via calls to mmap, and then later released via munmap. > - > -*/ > - > - > - > - > - > -/* sizes, alignments */ > - > -#define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) > -#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) > -#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) > -#define MINSIZE (sizeof(struct malloc_chunk)) > - > -/* conversion from malloc headers to user pointers, and back */ > - > -#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) > -#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) > - > -/* pad request bytes into a usable size */ > - > -#define request2size(req) \ > - (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ > - (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ > - (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) > - > -/* Check if m has acceptable alignment */ > - > -#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) > - > - > - > - > -/* > - Physical chunk operations > -*/ > - > - > -/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ > - > -#define PREV_INUSE 0x1 > - > -/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ > - > -#define IS_MMAPPED 0x2 > - > -/* Bits to mask off when extracting size */ > - > -#define SIZE_BITS (PREV_INUSE|IS_MMAPPED) > - > - > -/* Ptr to next physical malloc_chunk. */ > - > -#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) > - > -/* Ptr to previous physical malloc_chunk */ > - > -#define prev_chunk(p)\ > - ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) > - > - > -/* Treat space at ptr + offset as a chunk */ > - > -#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) > - > - > - > - > -/* > - Dealing with use bits > -*/ > - > -/* extract p's inuse bit */ > - > -#define inuse(p)\ > -((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) > - > -/* extract inuse bit of previous chunk */ > - > -#define prev_inuse(p) ((p)->size & PREV_INUSE) > - > -/* check for mmap()'ed chunk */ > - > -#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) > - > -/* set/clear chunk as in use without otherwise disturbing */ > - > -#define set_inuse(p)\ > -((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE > - > -#define clear_inuse(p)\ > -((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) > - > -/* check/set/clear inuse bits in known places */ > - > -#define inuse_bit_at_offset(p, s)\ > - (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) > - > -#define set_inuse_bit_at_offset(p, s)\ > - (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) > - > -#define clear_inuse_bit_at_offset(p, s)\ > - (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) > - > - > - > - > -/* > - Dealing with size fields > -*/ > - > -/* Get size, ignoring use bits */ > - > -#define chunksize(p) ((p)->size & ~(SIZE_BITS)) > - > -/* Set size at head, without disturbing its use bit */ > - > -#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) > - > -/* Set size/use ignoring previous bits in header */ > - > -#define set_head(p, s) ((p)->size = (s)) > - > -/* Set size at footer (only when chunk is not in use) */ > - > -#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) > - > - > - > - > - > -/* > - Bins > - > - The bins, `av_' are an array of pairs of pointers serving as the > - heads of (initially empty) doubly-linked lists of chunks, laid out > - in a way so that each pair can be treated as if it were in a > - malloc_chunk. (This way, the fd/bk offsets for linking bin heads > - and chunks are the same). > - > - Bins for sizes < 512 bytes contain chunks of all the same size, spaced > - 8 bytes apart. Larger bins are approximately logarithmically > - spaced. (See the table below.) The `av_' array is never mentioned > - directly in the code, but instead via bin access macros. > - > - Bin layout: > - > - 64 bins of size 8 > - 32 bins of size 64 > - 16 bins of size 512 > - 8 bins of size 4096 > - 4 bins of size 32768 > - 2 bins of size 262144 > - 1 bin of size what's left > - > - There is actually a little bit of slop in the numbers in bin_index > - for the sake of speed. This makes no difference elsewhere. > - > - The special chunks `top' and `last_remainder' get their own bins, > - (this is implemented via yet more trickery with the av_ array), > - although `top' is never properly linked to its bin since it is > - always handled specially. > - > -*/ > - > -#define NAV 128 /* number of bins */ > - > -typedef struct malloc_chunk* mbinptr; > - > -/* access macros */ > - > -#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) > -#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) > -#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) > - > -/* > - The first 2 bins are never indexed. The corresponding av_ cells are instead > - used for bookkeeping. This is not to save space, but to simplify > - indexing, maintain locality, and avoid some initialization tests. > -*/ > - > -#define top (bin_at(0)->fd) /* The topmost chunk */ > -#define last_remainder (bin_at(1)) /* remainder from last split */ > - > - > -/* > - Because top initially points to its own bin with initial > - zero size, thus forcing extension on the first malloc request, > - we avoid having any special code in malloc to check whether > - it even exists yet. But we still need to in malloc_extend_top. > -*/ > - > -#define initial_top ((mchunkptr)(bin_at(0))) > - > -/* Helper macro to initialize bins */ > - > -#define IAV(i) bin_at(i), bin_at(i) > - > -static mbinptr av_[NAV * 2 + 2] = { > - 0, 0, > - IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), > - IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), > - IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), > - IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), > - IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), > - IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), > - IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), > - IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), > - IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), > - IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), > - IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), > - IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), > - IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), > - IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), > - IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), > - IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) > -}; > - > - > - > -/* field-extraction macros */ > - > -#define first(b) ((b)->fd) > -#define last(b) ((b)->bk) > - > -/* > - Indexing into bins > -*/ > - > -#define bin_index(sz) \ > -(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ > - ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ > - ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ > - ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ > - ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ > - ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ > - 126) > -/* > - bins for chunks < 512 are all spaced 8 bytes apart, and hold > - identically sized chunks. This is exploited in malloc. > -*/ > - > -#define MAX_SMALLBIN 63 > -#define MAX_SMALLBIN_SIZE 512 > -#define SMALLBIN_WIDTH 8 > - > -#define smallbin_index(sz) (((unsigned long)(sz)) >> 3) > - > -/* > - Requests are `small' if both the corresponding and the next bin are small > -*/ > - > -#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) > - > - > - > -/* > - To help compensate for the large number of bins, a one-level index > - structure is used for bin-by-bin searching. `binblocks' is a > - one-word bitvector recording whether groups of BINBLOCKWIDTH bins > - have any (possibly) non-empty bins, so they can be skipped over > - all at once during during traversals. The bits are NOT always > - cleared as soon as all bins in a block are empty, but instead only > - when all are noticed to be empty during traversal in malloc. > -*/ > - > -#define BINBLOCKWIDTH 4 /* bins per block */ > - > -#define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */ > - > -/* bin<->block macros */ > - > -#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) > -#define mark_binblock(ii) (binblocks |= idx2binblock(ii)) > -#define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii))) > - > - > - > - > - > -/* Other static bookkeeping data */ > - > -/* variables holding tunable values */ > - > -static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; > -static unsigned long top_pad = DEFAULT_TOP_PAD; > -static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; > -static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; > - > -/* The first value returned from sbrk */ > -static char* sbrk_base = (char*)(-1); > - > -/* The maximum memory obtained from system via sbrk */ > -static unsigned long max_sbrked_mem = 0; > - > -/* The maximum via either sbrk or mmap */ > -static unsigned long max_total_mem = 0; > - > -/* internal working copy of mallinfo */ > -static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; > - > -/* The total memory obtained from system via sbrk */ > -#define sbrked_mem (current_mallinfo.arena) > - > -/* Tracking mmaps */ > - > -static unsigned int n_mmaps = 0; > -static unsigned int max_n_mmaps = 0; > -static unsigned long mmapped_mem = 0; > -static unsigned long max_mmapped_mem = 0; > - > - > - > -/* > - Debugging support > -*/ > - > -#if DEBUG > - > - > -/* > - These routines make a number of assertions about the states > - of data structures that should be true at all times. If any > - are not true, it's very likely that a user program has somehow > - trashed memory. (It's also possible that there is a coding error > - in malloc. In which case, please report it!) > -*/ > - > -#if __STD_C > -static void do_check_chunk(mchunkptr p) > -#else > -static void do_check_chunk(p) mchunkptr p; > -#endif > -{ > - INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; > - > - /* No checkable chunk is mmapped */ > - assert(!chunk_is_mmapped(p)); > - > - /* Check for legal address ... */ > - assert((char*)p >= sbrk_base); > - if (p != top) > - assert((char*)p + sz <= (char*)top); > - else > - assert((char*)p + sz <= sbrk_base + sbrked_mem); > - > -} > - > - > -#if __STD_C > -static void do_check_free_chunk(mchunkptr p) > -#else > -static void do_check_free_chunk(p) mchunkptr p; > -#endif > -{ > - INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; > - mchunkptr next = chunk_at_offset(p, sz); > - > - do_check_chunk(p); > - > - /* Check whether it claims to be free ... */ > - assert(!inuse(p)); > - > - /* Unless a special marker, must have OK fields */ > - if ((long)sz >= (long)MINSIZE) > - { > - assert((sz & MALLOC_ALIGN_MASK) == 0); > - assert(aligned_OK(chunk2mem(p))); > - /* ... matching footer field */ > - assert(next->prev_size == sz); > - /* ... and is fully consolidated */ > - assert(prev_inuse(p)); > - assert (next == top || inuse(next)); > - > - /* ... and has minimally sane links */ > - assert(p->fd->bk == p); > - assert(p->bk->fd == p); > - } > - else /* markers are always of size SIZE_SZ */ > - assert(sz == SIZE_SZ); > -} > - > -#if __STD_C > -static void do_check_inuse_chunk(mchunkptr p) > -#else > -static void do_check_inuse_chunk(p) mchunkptr p; > -#endif > -{ > - mchunkptr next = next_chunk(p); > - do_check_chunk(p); > - > - /* Check whether it claims to be in use ... */ > - assert(inuse(p)); > - > - /* ... and is surrounded by OK chunks. > - Since more things can be checked with free chunks than inuse ones, > - if an inuse chunk borders them and debug is on, it's worth doing them. > - */ > - if (!prev_inuse(p)) > - { > - mchunkptr prv = prev_chunk(p); > - assert(next_chunk(prv) == p); > - do_check_free_chunk(prv); > - } > - if (next == top) > - { > - assert(prev_inuse(next)); > - assert(chunksize(next) >= MINSIZE); > - } > - else if (!inuse(next)) > - do_check_free_chunk(next); > - > -} > - > -#if __STD_C > -static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) > -#else > -static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; > -#endif > -{ > - INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; > - long room = sz - s; > - > - do_check_inuse_chunk(p); > - > - /* Legal size ... */ > - assert((long)sz >= (long)MINSIZE); > - assert((sz & MALLOC_ALIGN_MASK) == 0); > - assert(room >= 0); > - assert(room < (long)MINSIZE); > - > - /* ... and alignment */ > - assert(aligned_OK(chunk2mem(p))); > - > - > - /* ... and was allocated at front of an available chunk */ > - assert(prev_inuse(p)); > - > -} > - > - > -#define check_free_chunk(P) do_check_free_chunk(P) > -#define check_inuse_chunk(P) do_check_inuse_chunk(P) > -#define check_chunk(P) do_check_chunk(P) > -#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) > -#else > -#define check_free_chunk(P) > -#define check_inuse_chunk(P) > -#define check_chunk(P) > -#define check_malloced_chunk(P,N) > -#endif > - > - > - > -/* > - Macro-based internal utilities > -*/ > - > - > -/* > - Linking chunks in bin lists. > - Call these only with variables, not arbitrary expressions, as arguments. > -*/ > - > -/* > - Place chunk p of size s in its bin, in size order, > - putting it ahead of others of same size. > -*/ > - > - > -#define frontlink(P, S, IDX, BK, FD) \ > -{ \ > - if (S < MAX_SMALLBIN_SIZE) \ > - { \ > - IDX = smallbin_index(S); \ > - mark_binblock(IDX); \ > - BK = bin_at(IDX); \ > - FD = BK->fd; \ > - P->bk = BK; \ > - P->fd = FD; \ > - FD->bk = BK->fd = P; \ > - } \ > - else \ > - { \ > - IDX = bin_index(S); \ > - BK = bin_at(IDX); \ > - FD = BK->fd; \ > - if (FD == BK) mark_binblock(IDX); \ > - else \ > - { \ > - while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ > - BK = FD->bk; \ > - } \ > - P->bk = BK; \ > - P->fd = FD; \ > - FD->bk = BK->fd = P; \ > - } \ > -} > - > - > -/* take a chunk off a list */ > - > -#define unlink(P, BK, FD) \ > -{ \ > - BK = P->bk; \ > - FD = P->fd; \ > - FD->bk = BK; \ > - BK->fd = FD; \ > -} \ > - > -/* Place p as the last remainder */ > - > -#define link_last_remainder(P) \ > -{ \ > - last_remainder->fd = last_remainder->bk = P; \ > - P->fd = P->bk = last_remainder; \ > -} > - > -/* Clear the last_remainder bin */ > - > -#define clear_last_remainder \ > - (last_remainder->fd = last_remainder->bk = last_remainder) > - > - > - > - > - > -/* Routines dealing with mmap(). */ > - > -#if HAVE_MMAP > - > -#if __STD_C > -static mchunkptr mmap_chunk(size_t size) > -#else > -static mchunkptr mmap_chunk(size) size_t size; > -#endif > -{ > - size_t page_mask = malloc_getpagesize - 1; > - mchunkptr p; > - > -#ifndef MAP_ANONYMOUS > - static int fd = -1; > -#endif > - > - if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ > - > - /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because > - * there is no following chunk whose prev_size field could be used. > - */ > - size = (size + SIZE_SZ + page_mask) & ~page_mask; > - > -#ifdef MAP_ANONYMOUS > - p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, > - MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); > -#else /* !MAP_ANONYMOUS */ > - if (fd < 0) > - { > - fd = open("/dev/zero", O_RDWR); > - if(fd < 0) return 0; > - } > - p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); > -#endif > - > - if(p == (mchunkptr)-1) return 0; > - > - n_mmaps++; > - if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; > - > - /* We demand that eight bytes into a page must be 8-byte aligned. */ > - assert(aligned_OK(chunk2mem(p))); > - > - /* The offset to the start of the mmapped region is stored > - * in the prev_size field of the chunk; normally it is zero, > - * but that can be changed in memalign(). > - */ > - p->prev_size = 0; > - set_head(p, size|IS_MMAPPED); > - > - mmapped_mem += size; > - if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) > - max_mmapped_mem = mmapped_mem; > - if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) > - max_total_mem = mmapped_mem + sbrked_mem; > - return p; > -} > - > -#if __STD_C > -static void munmap_chunk(mchunkptr p) > -#else > -static void munmap_chunk(p) mchunkptr p; > -#endif > -{ > - INTERNAL_SIZE_T size = chunksize(p); > - int ret; > - > - assert (chunk_is_mmapped(p)); > - assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); > - assert((n_mmaps > 0)); > - assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); > - > - n_mmaps--; > - mmapped_mem -= (size + p->prev_size); > - > - ret = munmap((char *)p - p->prev_size, size + p->prev_size); > - > - /* munmap returns non-zero on failure */ > - assert(ret == 0); > -} > - > -#if HAVE_MREMAP > - > -#if __STD_C > -static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) > -#else > -static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; > -#endif > -{ > - size_t page_mask = malloc_getpagesize - 1; > - INTERNAL_SIZE_T offset = p->prev_size; > - INTERNAL_SIZE_T size = chunksize(p); > - char *cp; > - > - assert (chunk_is_mmapped(p)); > - assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); > - assert((n_mmaps > 0)); > - assert(((size + offset) & (malloc_getpagesize-1)) == 0); > - > - /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ > - new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; > - > - cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); > - > - if (cp == (char *)-1) return 0; > - > - p = (mchunkptr)(cp + offset); > - > - assert(aligned_OK(chunk2mem(p))); > - > - assert((p->prev_size == offset)); > - set_head(p, (new_size - offset)|IS_MMAPPED); > - > - mmapped_mem -= size + offset; > - mmapped_mem += new_size; > - if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) > - max_mmapped_mem = mmapped_mem; > - if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) > - max_total_mem = mmapped_mem + sbrked_mem; > - return p; > -} > - > -#endif /* HAVE_MREMAP */ > - > -#endif /* HAVE_MMAP */ > - > - > - > - > -/* > - Extend the top-most chunk by obtaining memory from system. > - Main interface to sbrk (but see also malloc_trim). > -*/ > - > -#if __STD_C > -static void malloc_extend_top(INTERNAL_SIZE_T nb) > -#else > -static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; > -#endif > -{ > - char* brk; /* return value from sbrk */ > - INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ > - INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ > - char* new_brk; /* return of 2nd sbrk call */ > - INTERNAL_SIZE_T top_size; /* new size of top chunk */ > - > - mchunkptr old_top = top; /* Record state of old top */ > - INTERNAL_SIZE_T old_top_size = chunksize(old_top); > - char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); > - > - /* Pad request with top_pad plus minimal overhead */ > - > - INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; > - unsigned long pagesz = malloc_getpagesize; > - > - /* If not the first time through, round to preserve page boundary */ > - /* Otherwise, we need to correct to a page size below anyway. */ > - /* (We also correct below if an intervening foreign sbrk call.) */ > - > - if (sbrk_base != (char*)(-1)) > - sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); > - > - brk = (char*)(MORECORE (sbrk_size)); > - > - /* Fail if sbrk failed or if a foreign sbrk call killed our space */ > - if (brk == (char*)(MORECORE_FAILURE) || > - (brk < old_end && old_top != initial_top)) > - return; > - > - sbrked_mem += sbrk_size; > - > - if (brk == old_end) /* can just add bytes to current top */ > - { > - top_size = sbrk_size + old_top_size; > - set_head(top, top_size | PREV_INUSE); > - } > - else > - { > - if (sbrk_base == (char*)(-1)) /* First time through. Record base */ > - sbrk_base = brk; > - else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ > - sbrked_mem += brk - (char*)old_end; > - > - /* Guarantee alignment of first new chunk made from this space */ > - front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; > - if (front_misalign > 0) > - { > - correction = (MALLOC_ALIGNMENT) - front_misalign; > - brk += correction; > - } > - else > - correction = 0; > - > - /* Guarantee the next brk will be at a page boundary */ > - > - correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & > - ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); > - > - /* Allocate correction */ > - new_brk = (char*)(MORECORE (correction)); > - if (new_brk == (char*)(MORECORE_FAILURE)) return; > - > - sbrked_mem += correction; > - > - top = (mchunkptr)brk; > - top_size = new_brk - brk + correction; > - set_head(top, top_size | PREV_INUSE); > - > - if (old_top != initial_top) > - { > - > - /* There must have been an intervening foreign sbrk call. */ > - /* A double fencepost is necessary to prevent consolidation */ > - > - /* If not enough space to do this, then user did something very wrong */ > - if (old_top_size < MINSIZE) > - { > - set_head(top, PREV_INUSE); /* will force null return from malloc */ > - return; > - } > - > - /* Also keep size a multiple of MALLOC_ALIGNMENT */ > - old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; > - set_head_size(old_top, old_top_size); > - chunk_at_offset(old_top, old_top_size )->size = > - SIZE_SZ|PREV_INUSE; > - chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = > - SIZE_SZ|PREV_INUSE; > - /* If possible, release the rest. */ > - if (old_top_size >= MINSIZE) > - fREe(chunk2mem(old_top)); > - } > - } > - > - if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) > - max_sbrked_mem = sbrked_mem; > - if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) > - max_total_mem = mmapped_mem + sbrked_mem; > - > - /* We always land on a page boundary */ > - assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); > -} > - > - > - > - > -/* Main public routines */ > - > - > -/* > - Malloc Algorthim: > - > - The requested size is first converted into a usable form, `nb'. > - This currently means to add 4 bytes overhead plus possibly more to > - obtain 8-byte alignment and/or to obtain a size of at least > - MINSIZE (currently 16 bytes), the smallest allocatable size. > - (All fits are considered `exact' if they are within MINSIZE bytes.) > - > - From there, the first successful of the following steps is taken: > - > - 1. The bin corresponding to the request size is scanned, and if > - a chunk of exactly the right size is found, it is taken. > - > - 2. The most recently remaindered chunk is used if it is big > - enough. This is a form of (roving) first fit, used only in > - the absence of exact fits. Runs of consecutive requests use > - the remainder of the chunk used for the previous such request > - whenever possible. This limited use of a first-fit style > - allocation strategy tends to give contiguous chunks > - coextensive lifetimes, which improves locality and can reduce > - fragmentation in the long run. > - > - 3. Other bins are scanned in increasing size order, using a > - chunk big enough to fulfill the request, and splitting off > - any remainder. This search is strictly by best-fit; i.e., > - the smallest (with ties going to approximately the least > - recently used) chunk that fits is selected. > - > - 4. If large enough, the chunk bordering the end of memory > - (`top') is split off. (This use of `top' is in accord with > - the best-fit search rule. In effect, `top' is treated as > - larger (and thus less well fitting) than any other available > - chunk since it can be extended to be as large as necessary > - (up to system limitations). > - > - 5. If the request size meets the mmap threshold and the > - system supports mmap, and there are few enough currently > - allocated mmapped regions, and a call to mmap succeeds, > - the request is allocated via direct memory mapping. > - > - 6. Otherwise, the top of memory is extended by > - obtaining more space from the system (normally using sbrk, > - but definable to anything else via the MORECORE macro). > - Memory is gathered from the system (in system page-sized > - units) in a way that allows chunks obtained across different > - sbrk calls to be consolidated, but does not require > - contiguous memory. Thus, it should be safe to intersperse > - mallocs with other sbrk calls. > - > - > - All allocations are made from the the `lowest' part of any found > - chunk. (The implementation invariant is that prev_inuse is > - always true of any allocated chunk; i.e., that each allocated > - chunk borders either a previously allocated and still in-use chunk, > - or the base of its memory arena.) > - > -*/ > - > -#if __STD_C > -Void_t* mALLOc(size_t bytes) > -#else > -Void_t* mALLOc(bytes) size_t bytes; > -#endif > -{ > - mchunkptr victim; /* inspected/selected chunk */ > - INTERNAL_SIZE_T victim_size; /* its size */ > - int idx; /* index for bin traversal */ > - mbinptr bin; /* associated bin */ > - mchunkptr remainder; /* remainder from a split */ > - long remainder_size; /* its size */ > - int remainder_index; /* its bin index */ > - unsigned long block; /* block traverser bit */ > - int startidx; /* first bin of a traversed block */ > - mchunkptr fwd; /* misc temp for linking */ > - mchunkptr bck; /* misc temp for linking */ > - mbinptr q; /* misc temp */ > - > - INTERNAL_SIZE_T nb; > - > - if ((long)bytes < 0) return 0; > - > - nb = request2size(bytes); /* padded request size; */ > - > - /* Check for exact match in a bin */ > - > - if (is_small_request(nb)) /* Faster version for small requests */ > - { > - idx = smallbin_index(nb); > - > - /* No traversal or size check necessary for small bins. */ > - > - q = bin_at(idx); > - victim = last(q); > - > - /* Also scan the next one, since it would have a remainder < MINSIZE */ > - if (victim == q) > - { > - q = next_bin(q); > - victim = last(q); > - } > - if (victim != q) > - { > - victim_size = chunksize(victim); > - unlink(victim, bck, fwd); > - set_inuse_bit_at_offset(victim, victim_size); > - check_malloced_chunk(victim, nb); > - return chunk2mem(victim); > - } > - > - idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ > - > - } > - else > - { > - idx = bin_index(nb); > - bin = bin_at(idx); > - > - for (victim = last(bin); victim != bin; victim = victim->bk) > - { > - victim_size = chunksize(victim); > - remainder_size = victim_size - nb; > - > - if (remainder_size >= (long)MINSIZE) /* too big */ > - { > - --idx; /* adjust to rescan below after checking last remainder */ > - break; > - } > - > - else if (remainder_size >= 0) /* exact fit */ > - { > - unlink(victim, bck, fwd); > - set_inuse_bit_at_offset(victim, victim_size); > - check_malloced_chunk(victim, nb); > - return chunk2mem(victim); > - } > - } > - > - ++idx; > - > - } > - > - /* Try to use the last split-off remainder */ > - > - if ( (victim = last_remainder->fd) != last_remainder) > - { > - victim_size = chunksize(victim); > - remainder_size = victim_size - nb; > - > - if (remainder_size >= (long)MINSIZE) /* re-split */ > - { > - remainder = chunk_at_offset(victim, nb); > - set_head(victim, nb | PREV_INUSE); > - link_last_remainder(remainder); > - set_head(remainder, remainder_size | PREV_INUSE); > - set_foot(remainder, remainder_size); > - check_malloced_chunk(victim, nb); > - return chunk2mem(victim); > - } > - > - clear_last_remainder; > - > - if (remainder_size >= 0) /* exhaust */ > - { > - set_inuse_bit_at_offset(victim, victim_size); > - check_malloced_chunk(victim, nb); > - return chunk2mem(victim); > - } > - > - /* Else place in bin */ > - > - frontlink(victim, victim_size, remainder_index, bck, fwd); > - } > - > - /* > - If there are any possibly nonempty big-enough blocks, > - search for best fitting chunk by scanning bins in blockwidth units. > - */ > - > - if ( (block = idx2binblock(idx)) <= binblocks) > - { > - > - /* Get to the first marked block */ > - > - if ( (block & binblocks) == 0) > - { > - /* force to an even block boundary */ > - idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; > - block <<= 1; > - while ((block & binblocks) == 0) > - { > - idx += BINBLOCKWIDTH; > - block <<= 1; > - } > - } > - > - /* For each possibly nonempty block ... */ > - for (;;) > - { > - startidx = idx; /* (track incomplete blocks) */ > - q = bin = bin_at(idx); > - > - /* For each bin in this block ... */ > - do > - { > - /* Find and use first big enough chunk ... */ > - > - for (victim = last(bin); victim != bin; victim = victim->bk) > - { > - victim_size = chunksize(victim); > - remainder_size = victim_size - nb; > - > - if (remainder_size >= (long)MINSIZE) /* split */ > - { > - remainder = chunk_at_offset(victim, nb); > - set_head(victim, nb | PREV_INUSE); > - unlink(victim, bck, fwd); > - link_last_remainder(remainder); > - set_head(remainder, remainder_size | PREV_INUSE); > - set_foot(remainder, remainder_size); > - check_malloced_chunk(victim, nb); > - return chunk2mem(victim); > - } > - > - else if (remainder_size >= 0) /* take */ > - { > - set_inuse_bit_at_offset(victim, victim_size); > - unlink(victim, bck, fwd); > - check_malloced_chunk(victim, nb); > - return chunk2mem(victim); > - } > - > - } > - > - bin = next_bin(bin); > - > - } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); > - > - /* Clear out the block bit. */ > - > - do /* Possibly backtrack to try to clear a partial block */ > - { > - if ((startidx & (BINBLOCKWIDTH - 1)) == 0) > - { > - binblocks &= ~block; > - break; > - } > - --startidx; > - q = prev_bin(q); > - } while (first(q) == q); > - > - /* Get to the next possibly nonempty block */ > - > - if ( (block <<= 1) <= binblocks && (block != 0) ) > - { > - while ((block & binblocks) == 0) > - { > - idx += BINBLOCKWIDTH; > - block <<= 1; > - } > - } > - else > - break; > - } > - } > - > - > - /* Try to use top chunk */ > - > - /* Require that there be a remainder, ensuring top always exists */ > - if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) > - { > - > -#if HAVE_MMAP > - /* If big and would otherwise need to extend, try to use mmap instead */ > - if ((unsigned long)nb >= (unsigned long)mmap_threshold && > - (victim = mmap_chunk(nb)) != 0) > - return chunk2mem(victim); > -#endif > - > - /* Try to extend */ > - malloc_extend_top(nb); > - if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) > - return 0; /* propagate failure */ > - } > - > - victim = top; > - set_head(victim, nb | PREV_INUSE); > - top = chunk_at_offset(victim, nb); > - set_head(top, remainder_size | PREV_INUSE); > - check_malloced_chunk(victim, nb); > - return chunk2mem(victim); > - > -} > - > - > - > - > -/* > - > - free() algorithm : > - > - cases: > - > - 1. free(0) has no effect. > - > - 2. If the chunk was allocated via mmap, it is release via munmap(). > - > - 3. If a returned chunk borders the current high end of memory, > - it is consolidated into the top, and if the total unused > - topmost memory exceeds the trim threshold, malloc_trim is > - called. > - > - 4. Other chunks are consolidated as they arrive, and > - placed in corresponding bins. (This includes the case of > - consolidating with the current `last_remainder'). > - > -*/ > - > - > -#if __STD_C > -void fREe(Void_t* mem) > -#else > -void fREe(mem) Void_t* mem; > -#endif > -{ > - mchunkptr p; /* chunk corresponding to mem */ > - INTERNAL_SIZE_T hd; /* its head field */ > - INTERNAL_SIZE_T sz; /* its size */ > - int idx; /* its bin index */ > - mchunkptr next; /* next contiguous chunk */ > - INTERNAL_SIZE_T nextsz; /* its size */ > - INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ > - mchunkptr bck; /* misc temp for linking */ > - mchunkptr fwd; /* misc temp for linking */ > - int islr; /* track whether merging with last_remainder */ > - > - if (mem == 0) /* free(0) has no effect */ > - return; > - > - p = mem2chunk(mem); > - hd = p->size; > - > -#if HAVE_MMAP > - if (hd & IS_MMAPPED) /* release mmapped memory. */ > - { > - munmap_chunk(p); > - return; > - } > -#endif > - > - check_inuse_chunk(p); > - > - sz = hd & ~PREV_INUSE; > - next = chunk_at_offset(p, sz); > - nextsz = chunksize(next); > - > - if (next == top) /* merge with top */ > - { > - sz += nextsz; > - > - if (!(hd & PREV_INUSE)) /* consolidate backward */ > - { > - prevsz = p->prev_size; > - p = chunk_at_offset(p, -((long) prevsz)); > - sz += prevsz; > - unlink(p, bck, fwd); > - } > - > - set_head(p, sz | PREV_INUSE); > - top = p; > - if ((unsigned long)(sz) >= (unsigned long)trim_threshold) > - malloc_trim(top_pad); > - return; > - } > - > - set_head(next, nextsz); /* clear inuse bit */ > - > - islr = 0; > - > - if (!(hd & PREV_INUSE)) /* consolidate backward */ > - { > - prevsz = p->prev_size; > - p = chunk_at_offset(p, -((long) prevsz)); > - sz += prevsz; > - > - if (p->fd == last_remainder) /* keep as last_remainder */ > - islr = 1; > - else > - unlink(p, bck, fwd); > - } > - > - if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ > - { > - sz += nextsz; > - > - if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ > - { > - islr = 1; > - link_last_remainder(p); > - } > - else > - unlink(next, bck, fwd); > - } > - > - > - set_head(p, sz | PREV_INUSE); > - set_foot(p, sz); > - if (!islr) > - frontlink(p, sz, idx, bck, fwd); > -} > - > - > - > - > - > -/* > - > - Realloc algorithm: > - > - Chunks that were obtained via mmap cannot be extended or shrunk > - unless HAVE_MREMAP is defined, in which case mremap is used. > - Otherwise, if their reallocation is for additional space, they are > - copied. If for less, they are just left alone. > - > - Otherwise, if the reallocation is for additional space, and the > - chunk can be extended, it is, else a malloc-copy-free sequence is > - taken. There are several different ways that a chunk could be > - extended. All are tried: > - > - * Extending forward into following adjacent free chunk. > - * Shifting backwards, joining preceding adjacent space > - * Both shifting backwards and extending forward. > - * Extending into newly sbrked space > - > - Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a > - size argument of zero (re)allocates a minimum-sized chunk. > - > - If the reallocation is for less space, and the new request is for > - a `small' (<512 bytes) size, then the newly unused space is lopped > - off and freed. > - > - The old unix realloc convention of allowing the last-free'd chunk > - to be used as an argument to realloc is no longer supported. > - I don't know of any programs still relying on this feature, > - and allowing it would also allow too many other incorrect > - usages of realloc to be sensible. > - > - > -*/ > - > - > -#if __STD_C > -Void_t* rEALLOc(Void_t* oldmem, size_t bytes) > -#else > -Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; > -#endif > -{ > - INTERNAL_SIZE_T nb; /* padded request size */ > - > - mchunkptr oldp; /* chunk corresponding to oldmem */ > - INTERNAL_SIZE_T oldsize; /* its size */ > - > - mchunkptr newp; /* chunk to return */ > - INTERNAL_SIZE_T newsize; /* its size */ > - Void_t* newmem; /* corresponding user mem */ > - > - mchunkptr next; /* next contiguous chunk after oldp */ > - INTERNAL_SIZE_T nextsize; /* its size */ > - > - mchunkptr prev; /* previous contiguous chunk before oldp */ > - INTERNAL_SIZE_T prevsize; /* its size */ > - > - mchunkptr remainder; /* holds split off extra space from newp */ > - INTERNAL_SIZE_T remainder_size; /* its size */ > - > - mchunkptr bck; /* misc temp for linking */ > - mchunkptr fwd; /* misc temp for linking */ > - > -#ifdef REALLOC_ZERO_BYTES_FREES > - if (bytes == 0) { fREe(oldmem); return 0; } > -#endif > - > - if ((long)bytes < 0) return 0; > - > - /* realloc of null is supposed to be same as malloc */ > - if (oldmem == 0) return mALLOc(bytes); > - > - newp = oldp = mem2chunk(oldmem); > - newsize = oldsize = chunksize(oldp); > - > - > - nb = request2size(bytes); > - > -#if HAVE_MMAP > - if (chunk_is_mmapped(oldp)) > - { > -#if HAVE_MREMAP > - newp = mremap_chunk(oldp, nb); > - if(newp) return chunk2mem(newp); > -#endif > - /* Note the extra SIZE_SZ overhead. */ > - if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ > - /* Must alloc, copy, free. */ > - newmem = mALLOc(bytes); > - if (newmem == 0) return 0; /* propagate failure */ > - MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); > - munmap_chunk(oldp); > - return newmem; > - } > -#endif > - > - check_inuse_chunk(oldp); > - > - if ((long)(oldsize) < (long)(nb)) > - { > - > - /* Try expanding forward */ > - > - next = chunk_at_offset(oldp, oldsize); > - if (next == top || !inuse(next)) > - { > - nextsize = chunksize(next); > - > - /* Forward into top only if a remainder */ > - if (next == top) > - { > - if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) > - { > - newsize += nextsize; > - top = chunk_at_offset(oldp, nb); > - set_head(top, (newsize - nb) | PREV_INUSE); > - set_head_size(oldp, nb); > - return chunk2mem(oldp); > - } > - } > - > - /* Forward into next chunk */ > - else if (((long)(nextsize + newsize) >= (long)(nb))) > - { > - unlink(next, bck, fwd); > - newsize += nextsize; > - goto split; > - } > - } > - else > - { > - next = 0; > - nextsize = 0; > - } > - > - /* Try shifting backwards. */ > - > - if (!prev_inuse(oldp)) > - { > - prev = prev_chunk(oldp); > - prevsize = chunksize(prev); > - > - /* try forward + backward first to save a later consolidation */ > - > - if (next != 0) > - { > - /* into top */ > - if (next == top) > - { > - if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) > - { > - unlink(prev, bck, fwd); > - newp = prev; > - newsize += prevsize + nextsize; > - newmem = chunk2mem(newp); > - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); > - top = chunk_at_offset(newp, nb); > - set_head(top, (newsize - nb) | PREV_INUSE); > - set_head_size(newp, nb); > - return newmem; > - } > - } > - > - /* into next chunk */ > - else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) > - { > - unlink(next, bck, fwd); > - unlink(prev, bck, fwd); > - newp = prev; > - newsize += nextsize + prevsize; > - newmem = chunk2mem(newp); > - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); > - goto split; > - } > - } > - > - /* backward only */ > - if (prev != 0 && (long)(prevsize + newsize) >= (long)nb) > - { > - unlink(prev, bck, fwd); > - newp = prev; > - newsize += prevsize; > - newmem = chunk2mem(newp); > - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); > - goto split; > - } > - } > - > - /* Must allocate */ > - > - newmem = mALLOc (bytes); > - > - if (newmem == 0) /* propagate failure */ > - return 0; > - > - /* Avoid copy if newp is next chunk after oldp. */ > - /* (This can only happen when new chunk is sbrk'ed.) */ > - > - if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) > - { > - newsize += chunksize(newp); > - newp = oldp; > - goto split; > - } > - > - /* Otherwise copy, free, and exit */ > - MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); > - fREe(oldmem); > - return newmem; > - } > - > - > - split: /* split off extra room in old or expanded chunk */ > - > - if (newsize - nb >= MINSIZE) /* split off remainder */ > - { > - remainder = chunk_at_offset(newp, nb); > - remainder_size = newsize - nb; > - set_head_size(newp, nb); > - set_head(remainder, remainder_size | PREV_INUSE); > - set_inuse_bit_at_offset(remainder, remainder_size); > - fREe(chunk2mem(remainder)); /* let free() deal with it */ > - } > - else > - { > - set_head_size(newp, newsize); > - set_inuse_bit_at_offset(newp, newsize); > - } > - > - check_inuse_chunk(newp); > - return chunk2mem(newp); > -} > - > - > - > - > -/* > - > - memalign algorithm: > - > - memalign requests more than enough space from malloc, finds a spot > - within that chunk that meets the alignment request, and then > - possibly frees the leading and trailing space. > - > - The alignment argument must be a power of two. This property is not > - checked by memalign, so misuse may result in random runtime errors. > - > - 8-byte alignment is guaranteed by normal malloc calls, so don't > - bother calling memalign with an argument of 8 or less. > - > - Overreliance on memalign is a sure way to fragment space. > - > -*/ > - > - > -#if __STD_C > -Void_t* mEMALIGn(size_t alignment, size_t bytes) > -#else > -Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; > -#endif > -{ > - INTERNAL_SIZE_T nb; /* padded request size */ > - char* m; /* memory returned by malloc call */ > - mchunkptr p; /* corresponding chunk */ > - char* brk; /* alignment point within p */ > - mchunkptr newp; /* chunk to return */ > - INTERNAL_SIZE_T newsize; /* its size */ > - INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ > - mchunkptr remainder; /* spare room at end to split off */ > - long remainder_size; /* its size */ > - > - if ((long)bytes < 0) return 0; > - > - /* If need less alignment than we give anyway, just relay to malloc */ > - > - if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); > - > - /* Otherwise, ensure that it is at least a minimum chunk size */ > - > - if (alignment < MINSIZE) alignment = MINSIZE; > - > - /* Call malloc with worst case padding to hit alignment. */ > - > - nb = request2size(bytes); > - m = (char*)(mALLOc(nb + alignment + MINSIZE)); > - > - if (m == 0) return 0; /* propagate failure */ > - > - p = mem2chunk(m); > - > - if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ > - { > -#if HAVE_MMAP > - if(chunk_is_mmapped(p)) > - return chunk2mem(p); /* nothing more to do */ > -#endif > - } > - else /* misaligned */ > - { > - /* > - Find an aligned spot inside chunk. > - Since we need to give back leading space in a chunk of at > - least MINSIZE, if the first calculation places us at > - a spot with less than MINSIZE leader, we can move to the > - next aligned spot -- we've allocated enough total room so that > - this is always possible. > - */ > - > - brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); > - if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; > - > - newp = (mchunkptr)brk; > - leadsize = brk - (char*)(p); > - newsize = chunksize(p) - leadsize; > - > -#if HAVE_MMAP > - if(chunk_is_mmapped(p)) > - { > - newp->prev_size = p->prev_size + leadsize; > - set_head(newp, newsize|IS_MMAPPED); > - return chunk2mem(newp); > - } > -#endif > - > - /* give back leader, use the rest */ > - > - set_head(newp, newsize | PREV_INUSE); > - set_inuse_bit_at_offset(newp, newsize); > - set_head_size(p, leadsize); > - fREe(chunk2mem(p)); > - p = newp; > - > - assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); > - } > - > - /* Also give back spare room at the end */ > - > - remainder_size = chunksize(p) - nb; > - > - if (remainder_size >= (long)MINSIZE) > - { > - remainder = chunk_at_offset(p, nb); > - set_head(remainder, remainder_size | PREV_INUSE); > - set_head_size(p, nb); > - fREe(chunk2mem(remainder)); > - } > - > - check_inuse_chunk(p); > - return chunk2mem(p); > - > -} > - > - > - > - > -/* > - valloc just invokes memalign with alignment argument equal > - to the page size of the system (or as near to this as can > - be figured out from all the includes/defines above.) > -*/ > - > -#if __STD_C > -Void_t* vALLOc(size_t bytes) > -#else > -Void_t* vALLOc(bytes) size_t bytes; > -#endif > -{ > - return mEMALIGn (malloc_getpagesize, bytes); > -} > - > -/* > - pvalloc just invokes valloc for the nearest pagesize > - that will accommodate request > -*/ > - > - > -#if __STD_C > -Void_t* pvALLOc(size_t bytes) > -#else > -Void_t* pvALLOc(bytes) size_t bytes; > -#endif > -{ > - size_t pagesize = malloc_getpagesize; > - return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); > -} > - > -/* > - > - calloc calls malloc, then zeroes out the allocated chunk. > - > -*/ > - > -#if __STD_C > -Void_t* cALLOc(size_t n, size_t elem_size) > -#else > -Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; > -#endif > -{ > - mchunkptr p; > - INTERNAL_SIZE_T csz; > - > - INTERNAL_SIZE_T sz = n * elem_size; > - > - > - /* check if expand_top called, in which case don't need to clear */ > -#if MORECORE_CLEARS > - mchunkptr oldtop = top; > - INTERNAL_SIZE_T oldtopsize = chunksize(top); > -#endif > - Void_t* mem = mALLOc (sz); > - > - if ((long)n < 0) return 0; > - > - if (mem == 0) > - return 0; > - else > - { > - p = mem2chunk(mem); > - > - /* Two optional cases in which clearing not necessary */ > - > - > -#if HAVE_MMAP > - if (chunk_is_mmapped(p)) return mem; > -#endif > - > - csz = chunksize(p); > - > -#if MORECORE_CLEARS > - if (p == oldtop && csz > oldtopsize) > - { > - /* clear only the bytes from non-freshly-sbrked memory */ > - csz = oldtopsize; > - } > -#endif > - > - MALLOC_ZERO(mem, csz - SIZE_SZ); > - return mem; > - } > -} > - > -/* > - > - cfree just calls free. It is needed/defined on some systems > - that pair it with calloc, presumably for odd historical reasons. > - > -*/ > - > -#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) > -#if __STD_C > -void cfree(Void_t *mem) > -#else > -void cfree(mem) Void_t *mem; > -#endif > -{ > - fREe(mem); > -} > -#endif > - > - > - > -/* > - > - Malloc_trim gives memory back to the system (via negative > - arguments to sbrk) if there is unused memory at the `high' end of > - the malloc pool. You can call this after freeing large blocks of > - memory to potentially reduce the system-level memory requirements > - of a program. However, it cannot guarantee to reduce memory. Under > - some allocation patterns, some large free blocks of memory will be > - locked between two used chunks, so they cannot be given back to > - the system. > - > - The `pad' argument to malloc_trim represents the amount of free > - trailing space to leave untrimmed. If this argument is zero, > - only the minimum amount of memory to maintain internal data > - structures will be left (one page or less). Non-zero arguments > - can be supplied to maintain enough trailing space to service > - future expected allocations without having to re-obtain memory > - from the system. > - > - Malloc_trim returns 1 if it actually released any memory, else 0. > - > -*/ > - > -#if __STD_C > -int malloc_trim(size_t pad) > -#else > -int malloc_trim(pad) size_t pad; > -#endif > -{ > - long top_size; /* Amount of top-most memory */ > - long extra; /* Amount to release */ > - char* current_brk; /* address returned by pre-check sbrk call */ > - char* new_brk; /* address returned by negative sbrk call */ > - > - unsigned long pagesz = malloc_getpagesize; > - > - top_size = chunksize(top); > - extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; > - > - if (extra < (long)pagesz) /* Not enough memory to release */ > - return 0; > - > - else > - { > - /* Test to make sure no one else called sbrk */ > - current_brk = (char*)(MORECORE (0)); > - if (current_brk != (char*)(top) + top_size) > - return 0; /* Apparently we don't own memory; must fail */ > - > - else > - { > - new_brk = (char*)(MORECORE (-extra)); > - > - if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ > - { > - /* Try to figure out what we have */ > - current_brk = (char*)(MORECORE (0)); > - top_size = current_brk - (char*)top; > - if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ > - { > - sbrked_mem = current_brk - sbrk_base; > - set_head(top, top_size | PREV_INUSE); > - } > - check_chunk(top); > - return 0; > - } > - > - else > - { > - /* Success. Adjust top accordingly. */ > - set_head(top, (top_size - extra) | PREV_INUSE); > - sbrked_mem -= extra; > - check_chunk(top); > - return 1; > - } > - } > - } > -} > - > - > - > -/* > - malloc_usable_size: > - > - This routine tells you how many bytes you can actually use in an > - allocated chunk, which may be more than you requested (although > - often not). You can use this many bytes without worrying about > - overwriting other allocated objects. Not a particularly great > - programming practice, but still sometimes useful. > - > -*/ > - > -#if __STD_C > -size_t malloc_usable_size(Void_t* mem) > -#else > -size_t malloc_usable_size(mem) Void_t* mem; > -#endif > -{ > - mchunkptr p; > - if (mem == 0) > - return 0; > - else > - { > - p = mem2chunk(mem); > - if(!chunk_is_mmapped(p)) > - { > - if (!inuse(p)) return 0; > - check_inuse_chunk(p); > - return chunksize(p) - SIZE_SZ; > - } > - return chunksize(p) - 2*SIZE_SZ; > - } > -} > - > - > - > - > -/* Utility to update current_mallinfo for malloc_stats and mallinfo() */ > - > -static void malloc_update_mallinfo() > -{ > - int i; > - mbinptr b; > - mchunkptr p; > -#if DEBUG > - mchunkptr q; > -#endif > - > - INTERNAL_SIZE_T avail = chunksize(top); > - int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; > - > - for (i = 1; i < NAV; ++i) > - { > - b = bin_at(i); > - for (p = last(b); p != b; p = p->bk) > - { > -#if DEBUG > - check_free_chunk(p); > - for (q = next_chunk(p); > - q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; > - q = next_chunk(q)) > - check_inuse_chunk(q); > -#endif > - avail += chunksize(p); > - navail++; > - } > - } > - > - current_mallinfo.ordblks = navail; > - current_mallinfo.uordblks = sbrked_mem - avail; > - current_mallinfo.fordblks = avail; > - current_mallinfo.hblks = n_mmaps; > - current_mallinfo.hblkhd = mmapped_mem; > - current_mallinfo.keepcost = chunksize(top); > - > -} > - > - > - > -/* > - > - malloc_stats: > - > - Prints on stderr the amount of space obtain from the system (both > - via sbrk and mmap), the maximum amount (which may be more than > - current if malloc_trim and/or munmap got called), the maximum > - number of simultaneous mmap regions used, and the current number > - of bytes allocated via malloc (or realloc, etc) but not yet > - freed. (Note that this is the number of bytes allocated, not the > - number requested. It will be larger than the number requested > - because of alignment and bookkeeping overhead.) > - > -*/ > - > -void malloc_stats() > -{ > - malloc_update_mallinfo(); > - fprintf(stderr, "max system bytes = %10u\n", > - (unsigned int)(max_total_mem)); > - fprintf(stderr, "system bytes = %10u\n", > - (unsigned int)(sbrked_mem + mmapped_mem)); > - fprintf(stderr, "in use bytes = %10u\n", > - (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); > -#if HAVE_MMAP > - fprintf(stderr, "max mmap regions = %10u\n", > - (unsigned int)max_n_mmaps); > -#endif > -} > - > -/* > - mallinfo returns a copy of updated current mallinfo. > -*/ > - > -struct mallinfo mALLINFo() > -{ > - malloc_update_mallinfo(); > - return current_mallinfo; > -} > - > - > - > - > -/* > - mallopt: > - > - mallopt is the general SVID/XPG interface to tunable parameters. > - The format is to provide a (parameter-number, parameter-value) pair. > - mallopt then sets the corresponding parameter to the argument > - value if it can (i.e., so long as the value is meaningful), > - and returns 1 if successful else 0. > - > - See descriptions of tunable parameters above. > - > -*/ > - > -#if __STD_C > -int mALLOPt(int param_number, int value) > -#else > -int mALLOPt(param_number, value) int param_number; int value; > -#endif > -{ > - switch(param_number) > - { > - case M_TRIM_THRESHOLD: > - trim_threshold = value; return 1; > - case M_TOP_PAD: > - top_pad = value; return 1; > - case M_MMAP_THRESHOLD: > - mmap_threshold = value; return 1; > - case M_MMAP_MAX: > -#if HAVE_MMAP > - n_mmaps_max = value; return 1; > -#else > - if (value != 0) return 0; else n_mmaps_max = value; return 1; > -#endif > - > - default: > - return 0; > - } > -} > - > -/* > - > -History: > - > - V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) > - * return null for negative arguments > - * Added Several WIN32 cleanups from Martin C. Fong <mcfong@xxxxxxxxx> > - * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' > - (e.g. WIN32 platforms) > - * Cleanup up header file inclusion for WIN32 platforms > - * Cleanup code to avoid Microsoft Visual C++ compiler complaints > - * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing > - memory allocation routines > - * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) > - * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to > - usage of 'assert' in non-WIN32 code > - * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to > - avoid infinite loop > - * Always call 'fREe()' rather than 'free()' > - > - V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) > - * Fixed ordering problem with boundary-stamping > - > - V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) > - * Added pvalloc, as recommended by H.J. Liu > - * Added 64bit pointer support mainly from Wolfram Gloger > - * Added anonymously donated WIN32 sbrk emulation > - * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen > - * malloc_extend_top: fix mask error that caused wastage after > - foreign sbrks > - * Add linux mremap support code from HJ Liu > - > - V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) > - * Integrated most documentation with the code. > - * Add support for mmap, with help from > - Wolfram Gloger (Gloger@xxxxxxxxxxxxxxxxxxx). > - * Use last_remainder in more cases. > - * Pack bins using idea from colin@xxxxxxxxxxxxxxx > - * Use ordered bins instead of best-fit threshhold > - * Eliminate block-local decls to simplify tracing and debugging. > - * Support another case of realloc via move into top > - * Fix error occuring when initial sbrk_base not word-aligned. > - * Rely on page size for units instead of SBRK_UNIT to > - avoid surprises about sbrk alignment conventions. > - * Add mallinfo, mallopt. Thanks to Raymond Nijssen > - (raymond@xxxxxxxxxxxxx) for the suggestion. > - * Add `pad' argument to malloc_trim and top_pad mallopt parameter. > - * More precautions for cases where other routines call sbrk, > - courtesy of Wolfram Gloger (Gloger@xxxxxxxxxxxxxxxxxxx). > - * Added macros etc., allowing use in linux libc from > - H.J. Lu (hjl@xxxxxxxxxxxxxx) > - * Inverted this history list > - > - V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) > - * Re-tuned and fixed to behave more nicely with V2.6.0 changes. > - * Removed all preallocation code since under current scheme > - the work required to undo bad preallocations exceeds > - the work saved in good cases for most test programs. > - * No longer use return list or unconsolidated bins since > - no scheme using them consistently outperforms those that don't > - given above changes. > - * Use best fit for very large chunks to prevent some worst-cases. > - * Added some support for debugging > - > - V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) > - * Removed footers when chunks are in use. Thanks to > - Paul Wilson (wilson@xxxxxxxxxxxx) for the suggestion. > - > - V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) > - * Added malloc_trim, with help from Wolfram Gloger > - (wmglo@xxxxxxxxxxxxxxxxxxxxxxxx). > - > - V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) > - > - V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) > - * realloc: try to expand in both directions > - * malloc: swap order of clean-bin strategy; > - * realloc: only conditionally expand backwards > - * Try not to scavenge used bins > - * Use bin counts as a guide to preallocation > - * Occasionally bin return list chunks in first scan > - * Add a few optimizations from colin@xxxxxxxxxxxxxxx > - > - V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) > - * faster bin computation & slightly different binning > - * merged all consolidations to one part of malloc proper > - (eliminating old malloc_find_space & malloc_clean_bin) > - * Scan 2 returns chunks (not just 1) > - * Propagate failure in realloc if malloc returns 0 > - * Add stuff to allow compilation on non-ANSI compilers > - from kpv@xxxxxxxxxxxxxxxx > - > - V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) > - * removed potential for odd address access in prev_chunk > - * removed dependency on getpagesize.h > - * misc cosmetics and a bit more internal documentation > - * anticosmetics: mangled names in macros to evade debugger strangeness > - * tested on sparc, hp-700, dec-mips, rs6000 > - with gcc & native cc (hp, dec only) allowing > - Detlefs & Zorn comparison study (in SIGPLAN Notices.) > - > - Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) > - * Based loosely on libg++-1.2X malloc. (It retains some of the overall > - structure of old version, but most details differ.) > - > -*/ > > _______________________________________________ > barebox mailing list > barebox@xxxxxxxxxxxxxxxxxxx > http://lists.infradead.org/mailman/listinfo/barebox -- Pengutronix e.K. | | Industrial Linux Solutions | http://www.pengutronix.de/ | Peiner Str. 6-8, 31137 Hildesheim, Germany | Phone: +49-5121-206917-0 | Amtsgericht Hildesheim, HRA 2686 | Fax: +49-5121-206917-5555 | _______________________________________________ barebox mailing list barebox@xxxxxxxxxxxxxxxxxxx http://lists.infradead.org/mailman/listinfo/barebox