Mathieu pointed out to me on IRC that adding the control dep on the update side removes even that need for E. And I see that is what Boqun was suggesting above and that Frederic modified. See updated litmus here: https://www.irccloud.com/pastebin/TrXacogO/ With this, I am not seeing the "bad condition" happen. On Wed, Dec 21, 2022 at 7:33 PM Joel Fernandes <joel@xxxxxxxxxxxxxxxxx> wrote: > > Ah Frederic, I think you nailed it. E is required to order the flip > write with the control-dependency on the READ side. I can confirm the > below test with bad condition shows the previous reader sees the > post-flip index when it shouldn't have. Please see below modifications > to your Litmus test. > > I think we should document it in the code that E pairs with the > control-dependency between idx read and lock count write. > > C srcu > {} > // updater > P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > { > int lock1; > int unlock1; > int lock0; > int unlock0; > > // SCAN1 > unlock1 = READ_ONCE(*UNLOCK1); > smp_mb(); // A > lock1 = READ_ONCE(*LOCK1); > > // FLIP > smp_mb(); // E -------------------- required to make the bad > condition not happen. > WRITE_ONCE(*IDX, 1); > smp_mb(); // D > > // SCAN2 > unlock0 = READ_ONCE(*UNLOCK0); > smp_mb(); // A > lock0 = READ_ONCE(*LOCK0); > } > > // reader > P1(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > { > int tmp; > int idx1; > int idx2; > > // 1st reader > idx1 = READ_ONCE(*IDX); > if (idx1 == 0) { > tmp = READ_ONCE(*LOCK0); > WRITE_ONCE(*LOCK0, tmp + 1); > smp_mb(); /* B and C */ > tmp = READ_ONCE(*UNLOCK0); > WRITE_ONCE(*UNLOCK0, tmp + 1); > } else { > tmp = READ_ONCE(*LOCK1); > WRITE_ONCE(*LOCK1, tmp + 1); > smp_mb(); /* B and C */ > tmp = READ_ONCE(*UNLOCK1); > WRITE_ONCE(*UNLOCK1, tmp + 1); > } > > // second reader > idx2 = READ_ONCE(*IDX); > if (idx2 == 0) { > tmp = READ_ONCE(*LOCK0); > WRITE_ONCE(*LOCK0, tmp + 1); > smp_mb(); /* B and C */ > tmp = READ_ONCE(*UNLOCK0); > WRITE_ONCE(*UNLOCK0, tmp + 1); > } else { > tmp = READ_ONCE(*LOCK1); > WRITE_ONCE(*LOCK1, tmp + 1); > smp_mb(); /* B and C */ > tmp = READ_ONCE(*UNLOCK1); > WRITE_ONCE(*UNLOCK1, tmp + 1); > } > } > > exists (0:lock1=1 /\ 1:idx1=1 /\ 1:idx2=1 ) (* bad condition: 1st > reader saw flip *) > > > > > > On Wed, Dec 21, 2022 at 5:30 PM Frederic Weisbecker <frederic@xxxxxxxxxx> wrote: > > > > On Wed, Dec 21, 2022 at 08:02:28AM -0800, Boqun Feng wrote: > > > On Wed, Dec 21, 2022 at 12:26:29PM +0100, Frederic Weisbecker wrote: > > > > On Tue, Dec 20, 2022 at 09:41:17PM -0500, Joel Fernandes wrote: > > > > > > > > > > > > > > > > On Dec 20, 2022, at 7:50 PM, Frederic Weisbecker <frederic@xxxxxxxxxx> wrote: > > > > > > > > > > > > On Tue, Dec 20, 2022 at 07:15:00PM -0500, Joel Fernandes wrote: > > > > > >> On Tue, Dec 20, 2022 at 5:45 PM Frederic Weisbecker <frederic@xxxxxxxxxx> wrote: > > > > > >> Agreed about (1). > > > > > >> > > > > > >>> _ In (2), E pairs with the address-dependency between idx and lock_count. > > > > > >> > > > > > >> But that is not the only reason. If that was the only reason for (2), > > > > > >> then there is an smp_mb() just before the next-scan post-flip before > > > > > >> the lock counts are read. > > > > > > > > > > > > The post-flip barrier makes sure the new idx is visible on the next READER's > > > > > > turn, but it doesn't protect against the fact that "READ idx then WRITE lock[idx]" > > > > > > may appear unordered from the update side POV if there is no barrier between the > > > > > > scan and the flip. > > > > > > > > > > > > If you remove the smp_mb() from the litmus test I sent, things explode. > > > > > > > > > > Sure I see what you are saying and it’s a valid point as well. However why do you need memory barrier D (labeled such in the kernel code) for that? You already have a memory barrier A before the lock count is read. That will suffice for the ordering pairing with the addr dependency. > > > > > In other words, if updater sees readers lock counts, then reader would be making those lock count updates on post-flip inactive index, not the one being scanned as you wanted, and you will accomplish that just with the mem barrier A. > > > > > > > > > > So D fixes the above issue you are talking about (lock count update), however that is already fixed by the memory barrier A. But you still need D for the issue I mentioned (unlock counts vs flip). > > > > > > > > > > That’s just my opinion and let’s discuss more because I cannot rule out that I > > > > > am missing something with this complicated topic ;-) > > > > > > > > I must be missing something. I often do. > > > > > > > > Ok let's put that on litmus: > > > > > > > > ---- > > > > C srcu > > > > > > > > {} > > > > > > > > // updater > > > > P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > > > > { > > > > int lock1; > > > > int unlock1; > > > > int lock0; > > > > int unlock0; > > > > > > > > // SCAN1 > > > > unlock1 = READ_ONCE(*UNLOCK1); > > > > smp_mb(); // A > > > > lock1 = READ_ONCE(*LOCK1); > > > > > > > > // FLIP > > > > smp_mb(); // E > > > > > > In real code there is a control dependency between the READ_ONCE() above > > > and the WRITE_ONCE() before, i.e. only flip the idx when lock1 == > > > unlock1, maybe try with the P0 below? Untested due to not having herd on > > > this computer ;-) > > > > > > > WRITE_ONCE(*IDX, 1); > > > > smp_mb(); // D > > > > > > > > // SCAN2 > > > > unlock0 = READ_ONCE(*UNLOCK0); > > > > smp_mb(); // A > > > > lock0 = READ_ONCE(*LOCK0); > > > > } > > > > > > > P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > > > { > > > int lock1; > > > int unlock1; > > > int lock0; > > > int unlock0; > > > > > > // SCAN1 > > > unlock1 = READ_ONCE(*UNLOCK1); > > > smp_mb(); // A > > > lock1 = READ_ONCE(*LOCK1); > > > > > > // FLIP > > > if (unlock1 == lock1) { > > > smp_mb(); // E > > > WRITE_ONCE(*IDX, 1); > > > smp_mb(); // D > > > > > > // SCAN2 > > > unlock0 = READ_ONCE(*UNLOCK0); > > > smp_mb(); // A > > > lock0 = READ_ONCE(*LOCK0); > > > } > > > } > > > > That becomes the below (same effect). > > > > C D > > > > {} > > > > // updater > > P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > > { > > int lock1; > > int unlock1; > > int lock0; > > int unlock0; > > > > // SCAN1 > > unlock1 = READ_ONCE(*UNLOCK1); > > smp_mb(); // A > > lock1 = READ_ONCE(*LOCK1); > > > > if (unlock1 == lock1) { > > // FLIP > > smp_mb(); // E > > WRITE_ONCE(*IDX, 1); > > smp_mb(); // D > > > > // SCAN 2 > > unlock0 = READ_ONCE(*UNLOCK0); > > smp_mb(); // A > > lock0 = READ_ONCE(*LOCK0); > > } > > } > > > > // reader > > P1(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > > { > > int tmp; > > int idx; > > > > // 1st reader > > idx = READ_ONCE(*IDX); > > if (idx == 0) { > > tmp = READ_ONCE(*LOCK0); > > WRITE_ONCE(*LOCK0, tmp + 1); > > smp_mb(); /* B and C */ > > tmp = READ_ONCE(*UNLOCK0); > > WRITE_ONCE(*UNLOCK0, tmp + 1); > > } else { > > tmp = READ_ONCE(*LOCK1); > > WRITE_ONCE(*LOCK1, tmp + 1); > > smp_mb(); /* B and C */ > > tmp = READ_ONCE(*UNLOCK1); > > WRITE_ONCE(*UNLOCK1, tmp + 1); > > } > > > > // second reader > > idx = READ_ONCE(*IDX); > > if (idx == 0) { > > tmp = READ_ONCE(*LOCK0); > > WRITE_ONCE(*LOCK0, tmp + 1); > > smp_mb(); /* B and C */ > > tmp = READ_ONCE(*UNLOCK0); > > WRITE_ONCE(*UNLOCK0, tmp + 1); > > } else { > > tmp = READ_ONCE(*LOCK1); > > WRITE_ONCE(*LOCK1, tmp + 1); > > smp_mb(); /* B and C */ > > tmp = READ_ONCE(*UNLOCK1); > > WRITE_ONCE(*UNLOCK1, tmp + 1); > > } > > > > // third reader > > idx = READ_ONCE(*IDX); > > if (idx == 0) { > > tmp = READ_ONCE(*LOCK0); > > WRITE_ONCE(*LOCK0, tmp + 1); > > smp_mb(); /* B and C */ > > tmp = READ_ONCE(*UNLOCK0); > > WRITE_ONCE(*UNLOCK0, tmp + 1); > > } else { > > tmp = READ_ONCE(*LOCK1); > > WRITE_ONCE(*LOCK1, tmp + 1); > > smp_mb(); /* B and C */ > > tmp = READ_ONCE(*UNLOCK1); > > WRITE_ONCE(*UNLOCK1, tmp + 1); > > } > > } > > > > exists (0:unlock0=0 /\ 1:idx=0) > >