On Wed, Dec 21, 2022 at 08:02:28AM -0800, Boqun Feng wrote: > On Wed, Dec 21, 2022 at 12:26:29PM +0100, Frederic Weisbecker wrote: > > On Tue, Dec 20, 2022 at 09:41:17PM -0500, Joel Fernandes wrote: > > > > > > > > > > On Dec 20, 2022, at 7:50 PM, Frederic Weisbecker <frederic@xxxxxxxxxx> wrote: > > > > > > > > On Tue, Dec 20, 2022 at 07:15:00PM -0500, Joel Fernandes wrote: > > > >> On Tue, Dec 20, 2022 at 5:45 PM Frederic Weisbecker <frederic@xxxxxxxxxx> wrote: > > > >> Agreed about (1). > > > >> > > > >>> _ In (2), E pairs with the address-dependency between idx and lock_count. > > > >> > > > >> But that is not the only reason. If that was the only reason for (2), > > > >> then there is an smp_mb() just before the next-scan post-flip before > > > >> the lock counts are read. > > > > > > > > The post-flip barrier makes sure the new idx is visible on the next READER's > > > > turn, but it doesn't protect against the fact that "READ idx then WRITE lock[idx]" > > > > may appear unordered from the update side POV if there is no barrier between the > > > > scan and the flip. > > > > > > > > If you remove the smp_mb() from the litmus test I sent, things explode. > > > > > > Sure I see what you are saying and it’s a valid point as well. However why do you need memory barrier D (labeled such in the kernel code) for that? You already have a memory barrier A before the lock count is read. That will suffice for the ordering pairing with the addr dependency. > > > In other words, if updater sees readers lock counts, then reader would be making those lock count updates on post-flip inactive index, not the one being scanned as you wanted, and you will accomplish that just with the mem barrier A. > > > > > > So D fixes the above issue you are talking about (lock count update), however that is already fixed by the memory barrier A. But you still need D for the issue I mentioned (unlock counts vs flip). > > > > > > That’s just my opinion and let’s discuss more because I cannot rule out that I > > > am missing something with this complicated topic ;-) > > > > I must be missing something. I often do. > > > > Ok let's put that on litmus: > > > > ---- > > C srcu > > > > {} > > > > // updater > > P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > > { > > int lock1; > > int unlock1; > > int lock0; > > int unlock0; > > > > // SCAN1 > > unlock1 = READ_ONCE(*UNLOCK1); > > smp_mb(); // A > > lock1 = READ_ONCE(*LOCK1); > > > > // FLIP > > smp_mb(); // E > > In real code there is a control dependency between the READ_ONCE() above > and the WRITE_ONCE() before, i.e. only flip the idx when lock1 == > unlock1, maybe try with the P0 below? Untested due to not having herd on > this computer ;-) > > > WRITE_ONCE(*IDX, 1); > > smp_mb(); // D > > > > // SCAN2 > > unlock0 = READ_ONCE(*UNLOCK0); > > smp_mb(); // A > > lock0 = READ_ONCE(*LOCK0); > > } > > > P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) > { > int lock1; > int unlock1; > int lock0; > int unlock0; > > // SCAN1 > unlock1 = READ_ONCE(*UNLOCK1); > smp_mb(); // A > lock1 = READ_ONCE(*LOCK1); > > // FLIP > if (unlock1 == lock1) { > smp_mb(); // E > WRITE_ONCE(*IDX, 1); > smp_mb(); // D > > // SCAN2 > unlock0 = READ_ONCE(*UNLOCK0); > smp_mb(); // A > lock0 = READ_ONCE(*LOCK0); > } > } That becomes the below (same effect). C D {} // updater P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) { int lock1; int unlock1; int lock0; int unlock0; // SCAN1 unlock1 = READ_ONCE(*UNLOCK1); smp_mb(); // A lock1 = READ_ONCE(*LOCK1); if (unlock1 == lock1) { // FLIP smp_mb(); // E WRITE_ONCE(*IDX, 1); smp_mb(); // D // SCAN 2 unlock0 = READ_ONCE(*UNLOCK0); smp_mb(); // A lock0 = READ_ONCE(*LOCK0); } } // reader P1(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1) { int tmp; int idx; // 1st reader idx = READ_ONCE(*IDX); if (idx == 0) { tmp = READ_ONCE(*LOCK0); WRITE_ONCE(*LOCK0, tmp + 1); smp_mb(); /* B and C */ tmp = READ_ONCE(*UNLOCK0); WRITE_ONCE(*UNLOCK0, tmp + 1); } else { tmp = READ_ONCE(*LOCK1); WRITE_ONCE(*LOCK1, tmp + 1); smp_mb(); /* B and C */ tmp = READ_ONCE(*UNLOCK1); WRITE_ONCE(*UNLOCK1, tmp + 1); } // second reader idx = READ_ONCE(*IDX); if (idx == 0) { tmp = READ_ONCE(*LOCK0); WRITE_ONCE(*LOCK0, tmp + 1); smp_mb(); /* B and C */ tmp = READ_ONCE(*UNLOCK0); WRITE_ONCE(*UNLOCK0, tmp + 1); } else { tmp = READ_ONCE(*LOCK1); WRITE_ONCE(*LOCK1, tmp + 1); smp_mb(); /* B and C */ tmp = READ_ONCE(*UNLOCK1); WRITE_ONCE(*UNLOCK1, tmp + 1); } // third reader idx = READ_ONCE(*IDX); if (idx == 0) { tmp = READ_ONCE(*LOCK0); WRITE_ONCE(*LOCK0, tmp + 1); smp_mb(); /* B and C */ tmp = READ_ONCE(*UNLOCK0); WRITE_ONCE(*UNLOCK0, tmp + 1); } else { tmp = READ_ONCE(*LOCK1); WRITE_ONCE(*LOCK1, tmp + 1); smp_mb(); /* B and C */ tmp = READ_ONCE(*UNLOCK1); WRITE_ONCE(*UNLOCK1, tmp + 1); } } exists (0:unlock0=0 /\ 1:idx=0)