Re: [RFC 0/2] srcu: Remove pre-flip memory barrier

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Ah Frederic, I think you nailed it. E is required to order the flip
write with the control-dependency on the READ side. I can confirm the
below test with bad condition shows the previous reader sees the
post-flip index when it shouldn't have. Please see below modifications
to your Litmus test.

I think we should document it in the code that E pairs with the
control-dependency between idx read and lock count write.

C srcu
{}
// updater
P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
{
        int lock1;
        int unlock1;
        int lock0;
        int unlock0;

        // SCAN1
        unlock1 = READ_ONCE(*UNLOCK1);
        smp_mb(); // A
        lock1 = READ_ONCE(*LOCK1);

        // FLIP
        smp_mb(); // E -------------------- required to make the bad
condition not happen.
        WRITE_ONCE(*IDX, 1);
        smp_mb(); // D

        // SCAN2
        unlock0 = READ_ONCE(*UNLOCK0);
        smp_mb(); // A
        lock0 = READ_ONCE(*LOCK0);
}

// reader
P1(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
{
        int tmp;
        int idx1;
        int idx2;

        // 1st reader
        idx1 = READ_ONCE(*IDX);
        if (idx1 == 0) {
                tmp = READ_ONCE(*LOCK0);
                WRITE_ONCE(*LOCK0, tmp + 1);
                smp_mb(); /* B and C */
                tmp = READ_ONCE(*UNLOCK0);
                WRITE_ONCE(*UNLOCK0, tmp + 1);
        } else {
                tmp = READ_ONCE(*LOCK1);
                WRITE_ONCE(*LOCK1, tmp + 1);
                smp_mb(); /* B and C */
                tmp = READ_ONCE(*UNLOCK1);
                WRITE_ONCE(*UNLOCK1, tmp + 1);
        }

        // second reader
        idx2 = READ_ONCE(*IDX);
        if (idx2 == 0) {
                tmp = READ_ONCE(*LOCK0);
                WRITE_ONCE(*LOCK0, tmp + 1);
                smp_mb(); /* B and C */
                tmp = READ_ONCE(*UNLOCK0);
                WRITE_ONCE(*UNLOCK0, tmp + 1);
        } else {
                tmp = READ_ONCE(*LOCK1);
                WRITE_ONCE(*LOCK1, tmp + 1);
                smp_mb(); /* B and C */
                tmp = READ_ONCE(*UNLOCK1);
                WRITE_ONCE(*UNLOCK1, tmp + 1);
        }
}

exists (0:lock1=1 /\ 1:idx1=1 /\ 1:idx2=1 )  (* bad condition: 1st
reader saw flip *)





On Wed, Dec 21, 2022 at 5:30 PM Frederic Weisbecker <frederic@xxxxxxxxxx> wrote:
>
> On Wed, Dec 21, 2022 at 08:02:28AM -0800, Boqun Feng wrote:
> > On Wed, Dec 21, 2022 at 12:26:29PM +0100, Frederic Weisbecker wrote:
> > > On Tue, Dec 20, 2022 at 09:41:17PM -0500, Joel Fernandes wrote:
> > > >
> > > >
> > > > > On Dec 20, 2022, at 7:50 PM, Frederic Weisbecker <frederic@xxxxxxxxxx> wrote:
> > > > >
> > > > > On Tue, Dec 20, 2022 at 07:15:00PM -0500, Joel Fernandes wrote:
> > > > >> On Tue, Dec 20, 2022 at 5:45 PM Frederic Weisbecker <frederic@xxxxxxxxxx> wrote:
> > > > >> Agreed about (1).
> > > > >>
> > > > >>> _ In (2), E pairs with the address-dependency between idx and lock_count.
> > > > >>
> > > > >> But that is not the only reason. If that was the only reason for (2),
> > > > >> then there is an smp_mb() just before the next-scan post-flip before
> > > > >> the lock counts are read.
> > > > >
> > > > > The post-flip barrier makes sure the new idx is visible on the next READER's
> > > > > turn, but it doesn't protect against the fact that "READ idx then WRITE lock[idx]"
> > > > > may appear unordered from the update side POV if there is no barrier between the
> > > > > scan and the flip.
> > > > >
> > > > > If you remove the smp_mb() from the litmus test I sent, things explode.
> > > >
> > > > Sure I see what you are saying and it’s a valid point as well. However why do you need memory barrier D (labeled such in the kernel code) for that? You already have a memory barrier A before the lock count is read. That will suffice for the ordering pairing with the addr dependency.
> > > > In other words, if updater sees readers lock counts, then reader would be making those lock count updates on post-flip inactive index, not the one being scanned as you wanted, and you will accomplish that just with the mem barrier A.
> > > >
> > > > So D fixes the above issue you are talking about (lock count update), however that is already fixed by the memory barrier A. But you still need D for the issue I mentioned (unlock counts vs flip).
> > > >
> > > > That’s just my opinion and let’s discuss more because I cannot rule out that I
> > > > am missing something with this complicated topic ;-)
> > >
> > > I must be missing something. I often do.
> > >
> > > Ok let's put that on litmus:
> > >
> > > ----
> > > C srcu
> > >
> > > {}
> > >
> > > // updater
> > > P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
> > > {
> > >     int lock1;
> > >     int unlock1;
> > >     int lock0;
> > >     int unlock0;
> > >
> > >     // SCAN1
> > >     unlock1 = READ_ONCE(*UNLOCK1);
> > >     smp_mb(); // A
> > >     lock1 = READ_ONCE(*LOCK1);
> > >
> > >     // FLIP
> > >     smp_mb(); // E
> >
> > In real code there is a control dependency between the READ_ONCE() above
> > and the WRITE_ONCE() before, i.e. only flip the idx when lock1 ==
> > unlock1, maybe try with the P0 below? Untested due to not having herd on
> > this computer ;-)
> >
> > >     WRITE_ONCE(*IDX, 1);
> > >     smp_mb(); // D
> > >
> > >     // SCAN2
> > >     unlock0 = READ_ONCE(*UNLOCK0);
> > >     smp_mb(); // A
> > >     lock0 = READ_ONCE(*LOCK0);
> > > }
> > >
> >       P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
> >       {
> >               int lock1;
> >               int unlock1;
> >               int lock0;
> >               int unlock0;
> >
> >               // SCAN1
> >               unlock1 = READ_ONCE(*UNLOCK1);
> >               smp_mb(); // A
> >               lock1 = READ_ONCE(*LOCK1);
> >
> >               // FLIP
> >               if (unlock1 == lock1) {
> >                       smp_mb(); // E
> >                       WRITE_ONCE(*IDX, 1);
> >                       smp_mb(); // D
> >
> >                       // SCAN2
> >                       unlock0 = READ_ONCE(*UNLOCK0);
> >                       smp_mb(); // A
> >                       lock0 = READ_ONCE(*LOCK0);
> >               }
> >       }
>
> That becomes the below (same effect).
>
> C D
>
> {}
>
> // updater
> P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
> {
>         int lock1;
>         int unlock1;
>         int lock0;
>         int unlock0;
>
>         // SCAN1
>         unlock1 = READ_ONCE(*UNLOCK1);
>         smp_mb(); // A
>         lock1 = READ_ONCE(*LOCK1);
>
>         if (unlock1 == lock1) {
>                 // FLIP
>                 smp_mb(); // E
>                 WRITE_ONCE(*IDX, 1);
>                 smp_mb(); // D
>
>                 // SCAN 2
>                 unlock0 = READ_ONCE(*UNLOCK0);
>                 smp_mb(); // A
>                 lock0 = READ_ONCE(*LOCK0);
>         }
> }
>
> // reader
> P1(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
> {
>         int tmp;
>         int idx;
>
>         // 1st reader
>         idx = READ_ONCE(*IDX);
>         if (idx == 0) {
>                 tmp = READ_ONCE(*LOCK0);
>                 WRITE_ONCE(*LOCK0, tmp + 1);
>                 smp_mb(); /* B and C */
>                 tmp = READ_ONCE(*UNLOCK0);
>                 WRITE_ONCE(*UNLOCK0, tmp + 1);
>         } else {
>                 tmp = READ_ONCE(*LOCK1);
>                 WRITE_ONCE(*LOCK1, tmp + 1);
>                 smp_mb(); /* B and C */
>                 tmp = READ_ONCE(*UNLOCK1);
>                 WRITE_ONCE(*UNLOCK1, tmp + 1);
>         }
>
>         // second reader
>         idx = READ_ONCE(*IDX);
>         if (idx == 0) {
>                 tmp = READ_ONCE(*LOCK0);
>                 WRITE_ONCE(*LOCK0, tmp + 1);
>                 smp_mb(); /* B and C */
>                 tmp = READ_ONCE(*UNLOCK0);
>                 WRITE_ONCE(*UNLOCK0, tmp + 1);
>         } else {
>                 tmp = READ_ONCE(*LOCK1);
>                 WRITE_ONCE(*LOCK1, tmp + 1);
>                 smp_mb(); /* B and C */
>                 tmp = READ_ONCE(*UNLOCK1);
>                 WRITE_ONCE(*UNLOCK1, tmp + 1);
>         }
>
>         // third reader
>         idx = READ_ONCE(*IDX);
>         if (idx == 0) {
>                 tmp = READ_ONCE(*LOCK0);
>                 WRITE_ONCE(*LOCK0, tmp + 1);
>                 smp_mb(); /* B and C */
>                 tmp = READ_ONCE(*UNLOCK0);
>                 WRITE_ONCE(*UNLOCK0, tmp + 1);
>         } else {
>                 tmp = READ_ONCE(*LOCK1);
>                 WRITE_ONCE(*LOCK1, tmp + 1);
>                 smp_mb(); /* B and C */
>                 tmp = READ_ONCE(*UNLOCK1);
>                 WRITE_ONCE(*UNLOCK1, tmp + 1);
>         }
> }
>
> exists (0:unlock0=0 /\ 1:idx=0)
>




[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux