Search Postgresql Archives

Re: How to do faster DML

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




On 2/14/24 10:11 AM, veem v wrote:

On Wed, 14 Feb, 2024, 10:30 am Ron Johnson, <ronljohnsonjr@xxxxxxxxx> wrote:
On Tue, Feb 13, 2024 at 4:17 PM veem v <veema0000@xxxxxxxxx> wrote:
[sni[] 
One question here, if we have defined one column as a fixed length data type "integer" and slowly we noticed the length of data keeps increasing (in case of a sequence generated PK column which will keep increasing), and we want to alter the column to "bigint" now. In such scenario, will it append/pad the additional spaces to all the existing values which were already stored  with integer type initially in the table. And that would be then an increase to the existing table storage. Please correct me if I'm wrong.

ALTER TABLE foo ALTER COLUMN bar BIGINT; rewrites the whole table.  Do yourself a favor, and start with BIGINT.


Not yet tried, but that's interesting. I was initially thinking as it will be increasing the length, so it would be just a metadata change and finish within seconds.


It depends:

https://www.postgresql.org/docs/current/sql-altertable.html

"Adding a column with a volatile DEFAULT or changing the type of an existing column will require the entire table and its indexes to be rewritten. As an exception, when changing the type of an existing column, if the USING clause does not change the column contents and the old type is either binary coercible to the new type or an unconstrained domain over the new type, a table rewrite is not needed. However, indexes must always be rebuilt unless the system can verify that the new index would be logically equivalent to the existing one. For example, if the collation for a column has been changed, an index rebuild is always required because the new sort order might be different. However, in the absence of a collation change, a column can be changed from text to varchar (or vice versa) without rebuilding the indexes because these data types sort identically. Table and/or index rebuilds may take a significant amount of time for a large table; and will temporarily require as much as double the disk space.

"


create table int_test(int_fld integer);

insert into int_test select * from generate_series(1, 10000, 1);


select ctid, int_fld from int_test ;

ctid   | int_fld
----------+---------
 (0,1)    |       1
 (0,2)    |       2
 (0,3)    |       3
 (0,4)    |       4
 (0,5)    |       5
 (0,6)    |       6
 (0,7)    |       7
 (0,8)    |       8
 (0,9)    |       9
 (0,10)   |      10


alter table int_test alter column int_fld set data type bigint;

select ctid, int_fld from int_test ;

  ctid   | int_fld
----------+---------
 (0,1)    |       1
 (0,2)    |       2
 (0,3)    |       3
 (0,4)    |       4
 (0,5)    |       5
 (0,6)    |       6
 (0,7)    |       7
 (0,8)    |       8
 (0,9)    |       9
 (0,10)   |      10

update int_test set  int_fld = int_fld;

select ctid, int_fld from int_test  order by int_fld;

(63,1)    |       1
 (63,2)    |       2
 (63,3)    |       3
 (63,4)    |       4
 (63,5)    |       5
 (63,6)    |       6
 (63,7)    |       7
 (63,8)    |       8
 (63,9)    |       9
 (63,10)   |      10


Where ctid is:

https://www.postgresql.org/docs/current/ddl-system-columns.html


"

ctid

The physical location of the row version within its table. Note that although the ctid can be used to locate the row version very quickly, a row's ctid will change if it is updated or moved by VACUUM FULL. Therefore ctid is useless as a long-term row identifier. A primary key should be used to identify logical rows.

"


 But as you mentioned, it seems to be the effect of "fixed length data type" which is why it's going to rewrite whole table even we just increases the column length. Hope it won't be the case in variable length data type. 
-- 
Adrian Klaver
adrian.klaver@xxxxxxxxxxx

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Index of Archives]     [Postgresql Jobs]     [Postgresql Admin]     [Postgresql Performance]     [Linux Clusters]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Databases]     [Postgresql & PHP]     [Yosemite]

  Powered by Linux