Hi Lorenzo, On 04/02/21 10:39 pm, Lorenzo Pieralisi wrote: > On Thu, Feb 04, 2021 at 07:15:39PM +0530, Kishon Vijay Abraham I wrote: >> Hi Lorenzo, >> >> On 04/02/21 3:28 pm, Lorenzo Pieralisi wrote: >>> On Tue, Feb 02, 2021 at 12:12:55PM -0800, Randy Dunlap wrote: >>>> The pci-epf-ntb driver uses configfs APIs, so it should depend on >>>> CONFIGFS_FS to prevent build errors. >>>> >>>> ld: drivers/pci/endpoint/functions/pci-epf-ntb.o: in function `epf_ntb_add_cfs': >>>> pci-epf-ntb.c:(.text+0x1b): undefined reference to `config_group_init_type_name' >>>> >>>> Fixes: 7dc64244f9e9 ("PCI: endpoint: Add EP function driver to provide NTB functionality") >>>> >>>> Signed-off-by: Randy Dunlap <rdunlap@xxxxxxxxxxxxx> >>>> Cc: Kishon Vijay Abraham I <kishon@xxxxxx> >>>> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@xxxxxxx> >>>> Cc: linux-pci@xxxxxxxxxxxxxxx >>>> --- >>>> You may switch to 'select CONFIG_FS_FS' if you feel strongly about it. >>> >>> Kishon ? >> >> There seems to be some issue in the version that got merged. The v11 >> patch series had this fixed [1] by using select CONFIGFS_FS. However >> whatever was merged seems to be v10 which didn't have select CONFIGFS_FS >> [2]. I had sent a private mail to you pointing the same (attached for >> reference, not sure if it was delivered). > > I think that Bjorn has not pulled my pci/ntb branch yet (so the one > in -next is v10 indeed, my one should be v11, please check). Right, pci/ntb branch in your repo looks correct. Thanks Kishon > > Thanks, > Lorenzo > >> Thanks >> Kishon >> >> [1] -> >> https://lore.kernel.org/linux-doc/20210201195809.7342-14-kishon@xxxxxx/ >> >> [2] -> >> https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/tree/drivers/pci/endpoint/functions/Kconfig >>> >>> Thanks, >>> Lorenzo >>> >>>> drivers/pci/endpoint/functions/Kconfig | 1 + >>>> 1 file changed, 1 insertion(+) >>>> >>>> --- linux-next-20210202.orig/drivers/pci/endpoint/functions/Kconfig >>>> +++ linux-next-20210202/drivers/pci/endpoint/functions/Kconfig >>>> @@ -16,6 +16,7 @@ config PCI_EPF_TEST >>>> config PCI_EPF_NTB >>>> tristate "PCI Endpoint NTB driver" >>>> depends on PCI_ENDPOINT >>>> + depends on CONFIGFS_FS >>>> help >>>> Select this configuration option to enable the NTB driver >>>> for PCI Endpoint. NTB driver implements NTB controller > >> Date: Tue, 2 Feb 2021 21:57:37 +0530 >> From: Kishon Vijay Abraham I <kishon@xxxxxx> >> To: Lorenzo Pieralisi <lorenzo.pieralisi@xxxxxxx> >> Subject: Re: [PATCH v11 13/17] PCI: endpoint: Add EP function driver to >> provide NTB functionality >> User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 >> Thunderbird/68.10.0 >> >> Hi Lorenzo, >> >> On 02/02/21 1:28 am, Kishon Vijay Abraham I wrote: >>> Add a new endpoint function driver to provide NTB functionality >>> using multiple PCIe endpoint instances. >>> >>> Signed-off-by: Kishon Vijay Abraham I <kishon@xxxxxx> >>> [arnd@xxxxxxxx: Select configfs dependency] >>> Signed-off-by: Arnd Bergmann <arnd@xxxxxxxx> >>> [yebin10@xxxxxxxxxx: Fix unused but set variables] >>> Signed-off-by: Ye Bin <yebin10@xxxxxxxxxx> >>> [geert+renesas@xxxxxxxxx: Explain NTB in PCI_EPF_NTB help text] >>> Signed-off-by: Geert Uytterhoeven <geert+renesas@xxxxxxxxx> >>> --- >>> drivers/pci/endpoint/functions/Kconfig | 13 + >>> drivers/pci/endpoint/functions/Makefile | 1 + >>> drivers/pci/endpoint/functions/pci-epf-ntb.c | 2128 ++++++++++++++++++ >>> 3 files changed, 2142 insertions(+) >>> create mode 100644 drivers/pci/endpoint/functions/pci-epf-ntb.c >>> >>> diff --git a/drivers/pci/endpoint/functions/Kconfig b/drivers/pci/endpoint/functions/Kconfig >>> index 8820d0f7ec77..5f1242ca2f4e 100644 >>> --- a/drivers/pci/endpoint/functions/Kconfig >>> +++ b/drivers/pci/endpoint/functions/Kconfig >>> @@ -12,3 +12,16 @@ config PCI_EPF_TEST >>> for PCI Endpoint. >>> >>> If in doubt, say "N" to disable Endpoint test driver. >>> + >>> +config PCI_EPF_NTB >>> + tristate "PCI Endpoint NTB driver" >>> + depends on PCI_ENDPOINT >>> + select CONFIGFS_FS >> >> I'm seeing some difference between here and linux-next. >> https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/tree/drivers/pci/endpoint/functions/Kconfig >> >> I see "select CONFIGFS_FS" missing in linux-next. >> >> Thank You, >> Kishon >> >>> + help >>> + Select this configuration option to enable the Non-Transparent >>> + Bridge (NTB) driver for PCI Endpoint. NTB driver implements NTB >>> + controller functionality using multiple PCIe endpoint instances. >>> + It can support NTB endpoint function devices created using >>> + device tree. >>> + >>> + If in doubt, say "N" to disable Endpoint NTB driver. >>> diff --git a/drivers/pci/endpoint/functions/Makefile b/drivers/pci/endpoint/functions/Makefile >>> index d6fafff080e2..96ab932a537a 100644 >>> --- a/drivers/pci/endpoint/functions/Makefile >>> +++ b/drivers/pci/endpoint/functions/Makefile >>> @@ -4,3 +4,4 @@ >>> # >>> >>> obj-$(CONFIG_PCI_EPF_TEST) += pci-epf-test.o >>> +obj-$(CONFIG_PCI_EPF_NTB) += pci-epf-ntb.o >>> diff --git a/drivers/pci/endpoint/functions/pci-epf-ntb.c b/drivers/pci/endpoint/functions/pci-epf-ntb.c >>> new file mode 100644 >>> index 000000000000..338148cf56f5 >>> --- /dev/null >>> +++ b/drivers/pci/endpoint/functions/pci-epf-ntb.c >>> @@ -0,0 +1,2128 @@ >>> +// SPDX-License-Identifier: GPL-2.0 >>> +/** >>> + * Endpoint Function Driver to implement Non-Transparent Bridge functionality >>> + * >>> + * Copyright (C) 2020 Texas Instruments >>> + * Author: Kishon Vijay Abraham I <kishon@xxxxxx> >>> + */ >>> + >>> +/* >>> + * The PCI NTB function driver configures the SoC with multiple PCIe Endpoint >>> + * (EP) controller instances (see diagram below) in such a way that >>> + * transactions from one EP controller are routed to the other EP controller. >>> + * Once PCI NTB function driver configures the SoC with multiple EP instances, >>> + * HOST1 and HOST2 can communicate with each other using SoC as a bridge. >>> + * >>> + * +-------------+ +-------------+ >>> + * | | | | >>> + * | HOST1 | | HOST2 | >>> + * | | | | >>> + * +------^------+ +------^------+ >>> + * | | >>> + * | | >>> + * +---------|-------------------------------------------------|---------+ >>> + * | +------v------+ +------v------+ | >>> + * | | | | | | >>> + * | | EP | | EP | | >>> + * | | CONTROLLER1 | | CONTROLLER2 | | >>> + * | | <-----------------------------------> | | >>> + * | | | | | | >>> + * | | | | | | >>> + * | | | SoC With Multiple EP Instances | | | >>> + * | | | (Configured using NTB Function) | | | >>> + * | +-------------+ +-------------+ | >>> + * +---------------------------------------------------------------------+ >>> + */ >>> + >>> +#include <linux/delay.h> >>> +#include <linux/io.h> >>> +#include <linux/module.h> >>> +#include <linux/slab.h> >>> + >>> +#include <linux/pci-epc.h> >>> +#include <linux/pci-epf.h> >>> + >>> +static struct workqueue_struct *kpcintb_workqueue; >>> + >>> +#define COMMAND_CONFIGURE_DOORBELL 1 >>> +#define COMMAND_TEARDOWN_DOORBELL 2 >>> +#define COMMAND_CONFIGURE_MW 3 >>> +#define COMMAND_TEARDOWN_MW 4 >>> +#define COMMAND_LINK_UP 5 >>> +#define COMMAND_LINK_DOWN 6 >>> + >>> +#define COMMAND_STATUS_OK 1 >>> +#define COMMAND_STATUS_ERROR 2 >>> + >>> +#define LINK_STATUS_UP BIT(0) >>> + >>> +#define SPAD_COUNT 64 >>> +#define DB_COUNT 4 >>> +#define NTB_MW_OFFSET 2 >>> +#define DB_COUNT_MASK GENMASK(15, 0) >>> +#define MSIX_ENABLE BIT(16) >>> +#define MAX_DB_COUNT 32 >>> +#define MAX_MW 4 >>> + >>> +enum epf_ntb_bar { >>> + BAR_CONFIG, >>> + BAR_PEER_SPAD, >>> + BAR_DB_MW1, >>> + BAR_MW2, >>> + BAR_MW3, >>> + BAR_MW4, >>> +}; >>> + >>> +struct epf_ntb { >>> + u32 num_mws; >>> + u32 db_count; >>> + u32 spad_count; >>> + struct pci_epf *epf; >>> + u64 mws_size[MAX_MW]; >>> + struct config_group group; >>> + struct epf_ntb_epc *epc[2]; >>> +}; >>> + >>> +#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group) >>> + >>> +struct epf_ntb_epc { >>> + u8 func_no; >>> + bool linkup; >>> + bool is_msix; >>> + int msix_bar; >>> + u32 spad_size; >>> + struct pci_epc *epc; >>> + struct epf_ntb *epf_ntb; >>> + void __iomem *mw_addr[6]; >>> + size_t msix_table_offset; >>> + struct epf_ntb_ctrl *reg; >>> + struct pci_epf_bar *epf_bar; >>> + enum pci_barno epf_ntb_bar[6]; >>> + struct delayed_work cmd_handler; >>> + enum pci_epc_interface_type type; >>> + const struct pci_epc_features *epc_features; >>> +}; >>> + >>> +struct epf_ntb_ctrl { >>> + u32 command; >>> + u32 argument; >>> + u16 command_status; >>> + u16 link_status; >>> + u32 topology; >>> + u64 addr; >>> + u64 size; >>> + u32 num_mws; >>> + u32 mw1_offset; >>> + u32 spad_offset; >>> + u32 spad_count; >>> + u32 db_entry_size; >>> + u32 db_data[MAX_DB_COUNT]; >>> + u32 db_offset[MAX_DB_COUNT]; >>> +} __packed; >>> + >>> +static struct pci_epf_header epf_ntb_header = { >>> + .vendorid = PCI_ANY_ID, >>> + .deviceid = PCI_ANY_ID, >>> + .baseclass_code = PCI_BASE_CLASS_MEMORY, >>> + .interrupt_pin = PCI_INTERRUPT_INTA, >>> +}; >>> + >>> +/** >>> + * epf_ntb_link_up() - Raise link_up interrupt to both the hosts >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @link_up: true or false indicating Link is UP or Down >>> + * >>> + * Once NTB function in HOST1 and the NTB function in HOST2 invoke >>> + * ntb_link_enable(), this NTB function driver will trigger a link event to >>> + * the NTB client in both the hosts. >>> + */ >>> +static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up) >>> +{ >>> + enum pci_epc_interface_type type; >>> + enum pci_epc_irq_type irq_type; >>> + struct epf_ntb_epc *ntb_epc; >>> + struct epf_ntb_ctrl *ctrl; >>> + struct pci_epc *epc; >>> + bool is_msix; >>> + u8 func_no; >>> + int ret; >>> + >>> + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { >>> + ntb_epc = ntb->epc[type]; >>> + epc = ntb_epc->epc; >>> + func_no = ntb_epc->func_no; >>> + is_msix = ntb_epc->is_msix; >>> + ctrl = ntb_epc->reg; >>> + if (link_up) >>> + ctrl->link_status |= LINK_STATUS_UP; >>> + else >>> + ctrl->link_status &= ~LINK_STATUS_UP; >>> + irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI; >>> + ret = pci_epc_raise_irq(epc, func_no, irq_type, 1); >>> + if (ret) { >>> + dev_err(&epc->dev, >>> + "%s intf: Failed to raise Link Up IRQ\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_configure_mw() - Configure the Outbound Address Space for one host >>> + * to access the memory window of other host >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * @mw: Index of the memory window (either 0, 1, 2 or 3) >>> + * >>> + * +-----------------+ +---->+----------------+-----------+-----------------+ >>> + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | >>> + * +-----------------+ | +----------------+ +-----------------+ >>> + * | BAR1 | | | Doorbell 2 +---------+ | | >>> + * +-----------------+----+ +----------------+ | | | >>> + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ >>> + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | >>> + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ >>> + * +-----------------+ | |----------------+ | | | | >>> + * | BAR4 | | | | | | +-----------------+ >>> + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| >>> + * | BAR5 | | | | | | +-----------------+ >>> + * +-----------------+ +---->-----------------+ | | | | >>> + * EP CONTROLLER 1 | | | | +-----------------+ >>> + * | | | +---->+ MSI|X ADDRESS 4 | >>> + * +----------------+ | +-----------------+ >>> + * (A) EP CONTROLLER 2 | | | >>> + * (OB SPACE) | | | >>> + * +-------> MW1 | >>> + * | | >>> + * | | >>> + * (B) +-----------------+ >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * +-----------------+ >>> + * PCI Address Space >>> + * (Managed by HOST2) >>> + * >>> + * This function performs stage (B) in the above diagram (see MW1) i.e., map OB >>> + * address space of memory window to PCI address space. >>> + * >>> + * This operation requires 3 parameters >>> + * 1) Address in the outbound address space >>> + * 2) Address in the PCI Address space >>> + * 3) Size of the address region to be mapped >>> + * >>> + * The address in the outbound address space (for MW1, MW2, MW3 and MW4) is >>> + * stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3 >>> + * BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This >>> + * is populated in epf_ntb_alloc_peer_mem() in this driver. >>> + * >>> + * The address and size of the PCI address region that has to be mapped would >>> + * be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is >>> + * connected to HOST2. >>> + * >>> + * Please note Memory window1 (MW1) and Doorbell registers together will be >>> + * mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's >>> + * used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1], >>> + * epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2]. >>> + */ >>> +static int epf_ntb_configure_mw(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type, u32 mw) >>> +{ >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + struct pci_epf_bar *peer_epf_bar; >>> + enum pci_barno peer_barno; >>> + struct epf_ntb_ctrl *ctrl; >>> + phys_addr_t phys_addr; >>> + struct pci_epc *epc; >>> + u64 addr, size; >>> + int ret = 0; >>> + u8 func_no; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + epc = ntb_epc->epc; >>> + >>> + peer_ntb_epc = ntb->epc[!type]; >>> + peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; >>> + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; >>> + >>> + phys_addr = peer_epf_bar->phys_addr; >>> + ctrl = ntb_epc->reg; >>> + addr = ctrl->addr; >>> + size = ctrl->size; >>> + if (mw + NTB_MW_OFFSET == BAR_DB_MW1) >>> + phys_addr += ctrl->mw1_offset; >>> + >>> + if (size > ntb->mws_size[mw]) { >>> + dev_err(&epc->dev, >>> + "%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n", >>> + pci_epc_interface_string(type), mw, size, >>> + ntb->mws_size[mw]); >>> + ret = -EINVAL; >>> + goto err_invalid_size; >>> + } >>> + >>> + func_no = ntb_epc->func_no; >>> + >>> + ret = pci_epc_map_addr(epc, func_no, phys_addr, addr, size); >>> + if (ret) >>> + dev_err(&epc->dev, >>> + "%s intf: Failed to map memory window %d address\n", >>> + pci_epc_interface_string(type), mw); >>> + >>> +err_invalid_size: >>> + >>> + return ret; >>> +} >>> + >>> +/** >>> + * epf_ntb_teardown_mw() - Teardown the configured OB ATU >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * @mw: Index of the memory window (either 0, 1, 2 or 3) >>> + * >>> + * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using >>> + * pci_epc_unmap_addr() >>> + */ >>> +static void epf_ntb_teardown_mw(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type, u32 mw) >>> +{ >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + struct pci_epf_bar *peer_epf_bar; >>> + enum pci_barno peer_barno; >>> + struct epf_ntb_ctrl *ctrl; >>> + phys_addr_t phys_addr; >>> + struct pci_epc *epc; >>> + u8 func_no; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + epc = ntb_epc->epc; >>> + >>> + peer_ntb_epc = ntb->epc[!type]; >>> + peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; >>> + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; >>> + >>> + phys_addr = peer_epf_bar->phys_addr; >>> + ctrl = ntb_epc->reg; >>> + if (mw + NTB_MW_OFFSET == BAR_DB_MW1) >>> + phys_addr += ctrl->mw1_offset; >>> + func_no = ntb_epc->func_no; >>> + >>> + pci_epc_unmap_addr(epc, func_no, phys_addr); >>> +} >>> + >>> +/** >>> + * epf_ntb_configure_msi() - Map OB address space to MSI address >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * @db_count: Number of doorbell interrupts to map >>> + * >>> + *+-----------------+ +----->+----------------+-----------+-----------------+ >>> + *| BAR0 | | | Doorbell 1 +---+-------> MSI ADDRESS | >>> + *+-----------------+ | +----------------+ | +-----------------+ >>> + *| BAR1 | | | Doorbell 2 +---+ | | >>> + *+-----------------+----+ +----------------+ | | | >>> + *| BAR2 | | Doorbell 3 +---+ | | >>> + *+-----------------+----+ +----------------+ | | | >>> + *| BAR3 | | | Doorbell 4 +---+ | | >>> + *+-----------------+ | |----------------+ | | >>> + *| BAR4 | | | | | | >>> + *+-----------------+ | | MW1 | | | >>> + *| BAR5 | | | | | | >>> + *+-----------------+ +----->-----------------+ | | >>> + * EP CONTROLLER 1 | | | | >>> + * | | | | >>> + * +----------------+ +-----------------+ >>> + * (A) EP CONTROLLER 2 | | >>> + * (OB SPACE) | | >>> + * | MW1 | >>> + * | | >>> + * | | >>> + * (B) +-----------------+ >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * +-----------------+ >>> + * PCI Address Space >>> + * (Managed by HOST2) >>> + * >>> + * >>> + * This function performs stage (B) in the above diagram (see Doorbell 1, >>> + * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to >>> + * doorbell to MSI address in PCI address space. >>> + * >>> + * This operation requires 3 parameters >>> + * 1) Address reserved for doorbell in the outbound address space >>> + * 2) MSI-X address in the PCIe Address space >>> + * 3) Number of MSI-X interrupts that has to be configured >>> + * >>> + * The address in the outbound address space (for the Doorbell) is stored in >>> + * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to >>> + * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along >>> + * with address for MW1. >>> + * >>> + * pci_epc_map_msi_irq() takes the MSI address from MSI capability register >>> + * and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI >>> + * address. >>> + * >>> + * epf_ntb_configure_msi() also stores the MSI data to raise each interrupt >>> + * in db_data of the peer's control region. This helps the peer to raise >>> + * doorbell of the other host by writing db_data to the BAR corresponding to >>> + * BAR_DB_MW1. >>> + */ >>> +static int epf_ntb_configure_msi(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type, u16 db_count) >>> +{ >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + u32 db_entry_size, db_data, db_offset; >>> + struct pci_epf_bar *peer_epf_bar; >>> + struct epf_ntb_ctrl *peer_ctrl; >>> + enum pci_barno peer_barno; >>> + phys_addr_t phys_addr; >>> + struct pci_epc *epc; >>> + u8 func_no; >>> + int ret, i; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + epc = ntb_epc->epc; >>> + >>> + peer_ntb_epc = ntb->epc[!type]; >>> + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; >>> + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; >>> + peer_ctrl = peer_ntb_epc->reg; >>> + db_entry_size = peer_ctrl->db_entry_size; >>> + >>> + phys_addr = peer_epf_bar->phys_addr; >>> + func_no = ntb_epc->func_no; >>> + >>> + ret = pci_epc_map_msi_irq(epc, func_no, phys_addr, db_count, >>> + db_entry_size, &db_data, &db_offset); >>> + if (ret) { >>> + dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + >>> + for (i = 0; i < db_count; i++) { >>> + peer_ctrl->db_data[i] = db_data | i; >>> + peer_ctrl->db_offset[i] = db_offset; >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_configure_msix() - Map OB address space to MSI-X address >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * @db_count: Number of doorbell interrupts to map >>> + * >>> + *+-----------------+ +----->+----------------+-----------+-----------------+ >>> + *| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 | >>> + *+-----------------+ | +----------------+ +-----------------+ >>> + *| BAR1 | | | Doorbell 2 +---------+ | | >>> + *+-----------------+----+ +----------------+ | | | >>> + *| BAR2 | | Doorbell 3 +-------+ | +-----------------+ >>> + *+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 | >>> + *| BAR3 | | | Doorbell 4 +-----+ | +-----------------+ >>> + *+-----------------+ | |----------------+ | | | | >>> + *| BAR4 | | | | | | +-----------------+ >>> + *+-----------------+ | | MW1 + | +-->+ MSI-X ADDRESS 3|| >>> + *| BAR5 | | | | | +-----------------+ >>> + *+-----------------+ +----->-----------------+ | | | >>> + * EP CONTROLLER 1 | | | +-----------------+ >>> + * | | +---->+ MSI-X ADDRESS 4 | >>> + * +----------------+ +-----------------+ >>> + * (A) EP CONTROLLER 2 | | >>> + * (OB SPACE) | | >>> + * | MW1 | >>> + * | | >>> + * | | >>> + * (B) +-----------------+ >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * +-----------------+ >>> + * PCI Address Space >>> + * (Managed by HOST2) >>> + * >>> + * This function performs stage (B) in the above diagram (see Doorbell 1, >>> + * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to >>> + * doorbell to MSI-X address in PCI address space. >>> + * >>> + * This operation requires 3 parameters >>> + * 1) Address reserved for doorbell in the outbound address space >>> + * 2) MSI-X address in the PCIe Address space >>> + * 3) Number of MSI-X interrupts that has to be configured >>> + * >>> + * The address in the outbound address space (for the Doorbell) is stored in >>> + * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to >>> + * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along >>> + * with address for MW1. >>> + * >>> + * The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and >>> + * the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected >>> + * to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the >>> + * offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix() >>> + * gets the MSI-X address and data. >>> + * >>> + * epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt >>> + * in db_data of the peer's control region. This helps the peer to raise >>> + * doorbell of the other host by writing db_data to the BAR corresponding to >>> + * BAR_DB_MW1. >>> + */ >>> +static int epf_ntb_configure_msix(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type, >>> + u16 db_count) >>> +{ >>> + const struct pci_epc_features *epc_features; >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + struct pci_epf_bar *peer_epf_bar, *epf_bar; >>> + struct pci_epf_msix_tbl *msix_tbl; >>> + struct epf_ntb_ctrl *peer_ctrl; >>> + u32 db_entry_size, msg_data; >>> + enum pci_barno peer_barno; >>> + phys_addr_t phys_addr; >>> + struct pci_epc *epc; >>> + size_t align; >>> + u64 msg_addr; >>> + u8 func_no; >>> + int ret, i; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + epc = ntb_epc->epc; >>> + >>> + epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar]; >>> + msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset; >>> + >>> + peer_ntb_epc = ntb->epc[!type]; >>> + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; >>> + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; >>> + phys_addr = peer_epf_bar->phys_addr; >>> + peer_ctrl = peer_ntb_epc->reg; >>> + epc_features = ntb_epc->epc_features; >>> + align = epc_features->align; >>> + >>> + func_no = ntb_epc->func_no; >>> + db_entry_size = peer_ctrl->db_entry_size; >>> + >>> + for (i = 0; i < db_count; i++) { >>> + msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align); >>> + msg_data = msix_tbl[i].msg_data; >>> + ret = pci_epc_map_addr(epc, func_no, phys_addr, msg_addr, >>> + db_entry_size); >>> + if (ret) { >>> + dev_err(&epc->dev, >>> + "%s intf: Failed to configure MSI-X IRQ\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + phys_addr = phys_addr + db_entry_size; >>> + peer_ctrl->db_data[i] = msg_data; >>> + peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1); >>> + } >>> + ntb_epc->is_msix = true; >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_configure_db() - Configure the Outbound Address Space for one host >>> + * to ring the doorbell of other host >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * @db_count: Count of the number of doorbells that has to be configured >>> + * @msix: Indicates whether MSI-X or MSI should be used >>> + * >>> + * Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for >>> + * one HOST to ring the doorbell of other HOST. >>> + */ >>> +static int epf_ntb_configure_db(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type, >>> + u16 db_count, bool msix) >>> +{ >>> + struct epf_ntb_epc *ntb_epc; >>> + struct pci_epc *epc; >>> + int ret; >>> + >>> + if (db_count > MAX_DB_COUNT) >>> + return -EINVAL; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + epc = ntb_epc->epc; >>> + >>> + if (msix) >>> + ret = epf_ntb_configure_msix(ntb, type, db_count); >>> + else >>> + ret = epf_ntb_configure_msi(ntb, type, db_count); >>> + >>> + if (ret) >>> + dev_err(&epc->dev, "%s intf: Failed to configure DB\n", >>> + pci_epc_interface_string(type)); >>> + >>> + return ret; >>> +} >>> + >>> +/** >>> + * epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X >>> + * address >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address. >>> + */ >>> +static void >>> +epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type) >>> +{ >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + struct pci_epf_bar *peer_epf_bar; >>> + enum pci_barno peer_barno; >>> + phys_addr_t phys_addr; >>> + struct pci_epc *epc; >>> + u8 func_no; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + epc = ntb_epc->epc; >>> + >>> + peer_ntb_epc = ntb->epc[!type]; >>> + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; >>> + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; >>> + phys_addr = peer_epf_bar->phys_addr; >>> + func_no = ntb_epc->func_no; >>> + >>> + pci_epc_unmap_addr(epc, func_no, phys_addr); >>> +} >>> + >>> +/** >>> + * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host >>> + * @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY) >>> + * >>> + * Workqueue function that gets invoked for the two epf_ntb_epc >>> + * periodically (once every 5ms) to see if it has received any commands >>> + * from NTB host. The host can send commands to configure doorbell or >>> + * configure memory window or to update link status. >>> + */ >>> +static void epf_ntb_cmd_handler(struct work_struct *work) >>> +{ >>> + enum pci_epc_interface_type type; >>> + struct epf_ntb_epc *ntb_epc; >>> + struct epf_ntb_ctrl *ctrl; >>> + u32 command, argument; >>> + struct epf_ntb *ntb; >>> + struct device *dev; >>> + u16 db_count; >>> + bool is_msix; >>> + int ret; >>> + >>> + ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work); >>> + ctrl = ntb_epc->reg; >>> + command = ctrl->command; >>> + if (!command) >>> + goto reset_handler; >>> + argument = ctrl->argument; >>> + >>> + ctrl->command = 0; >>> + ctrl->argument = 0; >>> + >>> + ctrl = ntb_epc->reg; >>> + type = ntb_epc->type; >>> + ntb = ntb_epc->epf_ntb; >>> + dev = &ntb->epf->dev; >>> + >>> + switch (command) { >>> + case COMMAND_CONFIGURE_DOORBELL: >>> + db_count = argument & DB_COUNT_MASK; >>> + is_msix = argument & MSIX_ENABLE; >>> + ret = epf_ntb_configure_db(ntb, type, db_count, is_msix); >>> + if (ret < 0) >>> + ctrl->command_status = COMMAND_STATUS_ERROR; >>> + else >>> + ctrl->command_status = COMMAND_STATUS_OK; >>> + break; >>> + case COMMAND_TEARDOWN_DOORBELL: >>> + epf_ntb_teardown_db(ntb, type); >>> + ctrl->command_status = COMMAND_STATUS_OK; >>> + break; >>> + case COMMAND_CONFIGURE_MW: >>> + ret = epf_ntb_configure_mw(ntb, type, argument); >>> + if (ret < 0) >>> + ctrl->command_status = COMMAND_STATUS_ERROR; >>> + else >>> + ctrl->command_status = COMMAND_STATUS_OK; >>> + break; >>> + case COMMAND_TEARDOWN_MW: >>> + epf_ntb_teardown_mw(ntb, type, argument); >>> + ctrl->command_status = COMMAND_STATUS_OK; >>> + break; >>> + case COMMAND_LINK_UP: >>> + ntb_epc->linkup = true; >>> + if (ntb->epc[PRIMARY_INTERFACE]->linkup && >>> + ntb->epc[SECONDARY_INTERFACE]->linkup) { >>> + ret = epf_ntb_link_up(ntb, true); >>> + if (ret < 0) >>> + ctrl->command_status = COMMAND_STATUS_ERROR; >>> + else >>> + ctrl->command_status = COMMAND_STATUS_OK; >>> + goto reset_handler; >>> + } >>> + ctrl->command_status = COMMAND_STATUS_OK; >>> + break; >>> + case COMMAND_LINK_DOWN: >>> + ntb_epc->linkup = false; >>> + ret = epf_ntb_link_up(ntb, false); >>> + if (ret < 0) >>> + ctrl->command_status = COMMAND_STATUS_ERROR; >>> + else >>> + ctrl->command_status = COMMAND_STATUS_OK; >>> + break; >>> + default: >>> + dev_err(dev, "%s intf UNKNOWN command: %d\n", >>> + pci_epc_interface_string(type), command); >>> + break; >>> + } >>> + >>> +reset_handler: >>> + queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler, >>> + msecs_to_jiffies(5)); >>> +} >>> + >>> +/** >>> + * epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + *+-----------------+------->+------------------+ +-----------------+ >>> + *| BAR0 | | CONFIG REGION | | BAR0 | >>> + *+-----------------+----+ +------------------+<-------+-----------------+ >>> + *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | >>> + *+-----------------+ +-->+------------------+<-------+-----------------+ >>> + *| BAR2 | Local Memory | BAR2 | >>> + *+-----------------+ +-----------------+ >>> + *| BAR3 | | BAR3 | >>> + *+-----------------+ +-----------------+ >>> + *| BAR4 | | BAR4 | >>> + *+-----------------+ +-----------------+ >>> + *| BAR5 | | BAR5 | >>> + *+-----------------+ +-----------------+ >>> + * EP CONTROLLER 1 EP CONTROLLER 2 >>> + * >>> + * Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad >>> + * region. While BAR1 is the default peer scratchpad BAR, an NTB could have >>> + * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). >>> + * This function can get the exact BAR used for peer scratchpad from >>> + * epf_ntb_bar[BAR_PEER_SPAD]. >>> + * >>> + * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function >>> + * gets the address of peer scratchpad from >>> + * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. >>> + */ >>> +static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc) >>> +{ >>> + struct pci_epf_bar *epf_bar; >>> + enum pci_barno barno; >>> + struct pci_epc *epc; >>> + u8 func_no; >>> + >>> + epc = ntb_epc->epc; >>> + func_no = ntb_epc->func_no; >>> + barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + pci_epc_clear_bar(epc, func_no, epf_bar); >>> +} >>> + >>> +/** >>> + * epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + *+-----------------+------->+------------------+ +-----------------+ >>> + *| BAR0 | | CONFIG REGION | | BAR0 | >>> + *+-----------------+----+ +------------------+<-------+-----------------+ >>> + *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | >>> + *+-----------------+ +-->+------------------+<-------+-----------------+ >>> + *| BAR2 | Local Memory | BAR2 | >>> + *+-----------------+ +-----------------+ >>> + *| BAR3 | | BAR3 | >>> + *+-----------------+ +-----------------+ >>> + *| BAR4 | | BAR4 | >>> + *+-----------------+ +-----------------+ >>> + *| BAR5 | | BAR5 | >>> + *+-----------------+ +-----------------+ >>> + * EP CONTROLLER 1 EP CONTROLLER 2 >>> + * >>> + * Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad >>> + * region. While BAR1 is the default peer scratchpad BAR, an NTB could have >>> + * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). >>> + * This function can get the exact BAR used for peer scratchpad from >>> + * epf_ntb_bar[BAR_PEER_SPAD]. >>> + * >>> + * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function >>> + * gets the address of peer scratchpad from >>> + * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. >>> + */ >>> +static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + struct pci_epf_bar *peer_epf_bar, *epf_bar; >>> + enum pci_barno peer_barno, barno; >>> + u32 peer_spad_offset; >>> + struct pci_epc *epc; >>> + struct device *dev; >>> + u8 func_no; >>> + int ret; >>> + >>> + dev = &ntb->epf->dev; >>> + >>> + peer_ntb_epc = ntb->epc[!type]; >>> + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]; >>> + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + func_no = ntb_epc->func_no; >>> + epc = ntb_epc->epc; >>> + >>> + peer_spad_offset = peer_ntb_epc->reg->spad_offset; >>> + epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset; >>> + epf_bar->size = peer_ntb_epc->spad_size; >>> + epf_bar->barno = barno; >>> + epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; >>> + >>> + ret = pci_epc_set_bar(epc, func_no, epf_bar); >>> + if (ret) { >>> + dev_err(dev, "%s intf: peer SPAD BAR set failed\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * +-----------------+------->+------------------+ +-----------------+ >>> + * | BAR0 | | CONFIG REGION | | BAR0 | >>> + * +-----------------+----+ +------------------+<-------+-----------------+ >>> + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | >>> + * +-----------------+ +-->+------------------+<-------+-----------------+ >>> + * | BAR2 | Local Memory | BAR2 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR3 | | BAR3 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR4 | | BAR4 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR5 | | BAR5 | >>> + * +-----------------+ +-----------------+ >>> + * EP CONTROLLER 1 EP CONTROLLER 2 >>> + * >>> + * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and >>> + * self scratchpad region (removes inbound ATU configuration). While BAR0 is >>> + * the default self scratchpad BAR, an NTB could have other BARs for self >>> + * scratchpad (because of reserved BARs). This function can get the exact BAR >>> + * used for self scratchpad from epf_ntb_bar[BAR_CONFIG]. >>> + * >>> + * Please note the self scratchpad region and config region is combined to >>> + * a single region and mapped using the same BAR. Also note HOST2's peer >>> + * scratchpad is HOST1's self scratchpad. >>> + */ >>> +static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc) >>> +{ >>> + struct pci_epf_bar *epf_bar; >>> + enum pci_barno barno; >>> + struct pci_epc *epc; >>> + u8 func_no; >>> + >>> + epc = ntb_epc->epc; >>> + func_no = ntb_epc->func_no; >>> + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + pci_epc_clear_bar(epc, func_no, epf_bar); >>> +} >>> + >>> +/** >>> + * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * +-----------------+------->+------------------+ +-----------------+ >>> + * | BAR0 | | CONFIG REGION | | BAR0 | >>> + * +-----------------+----+ +------------------+<-------+-----------------+ >>> + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | >>> + * +-----------------+ +-->+------------------+<-------+-----------------+ >>> + * | BAR2 | Local Memory | BAR2 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR3 | | BAR3 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR4 | | BAR4 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR5 | | BAR5 | >>> + * +-----------------+ +-----------------+ >>> + * EP CONTROLLER 1 EP CONTROLLER 2 >>> + * >>> + * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and >>> + * self scratchpad region. While BAR0 is the default self scratchpad BAR, an >>> + * NTB could have other BARs for self scratchpad (because of reserved BARs). >>> + * This function can get the exact BAR used for self scratchpad from >>> + * epf_ntb_bar[BAR_CONFIG]. >>> + * >>> + * Please note the self scratchpad region and config region is combined to >>> + * a single region and mapped using the same BAR. Also note HOST2's peer >>> + * scratchpad is HOST1's self scratchpad. >>> + */ >>> +static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc) >>> +{ >>> + struct pci_epf_bar *epf_bar; >>> + enum pci_barno barno; >>> + struct epf_ntb *ntb; >>> + struct pci_epc *epc; >>> + struct device *dev; >>> + u8 func_no; >>> + int ret; >>> + >>> + ntb = ntb_epc->epf_ntb; >>> + dev = &ntb->epf->dev; >>> + >>> + epc = ntb_epc->epc; >>> + func_no = ntb_epc->func_no; >>> + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + >>> + ret = pci_epc_set_bar(epc, func_no, epf_bar); >>> + if (ret) { >>> + dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n", >>> + pci_epc_interface_string(ntb_epc->type)); >>> + return ret; >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_config_spad_bar_free() - Free the physical memory associated with >>> + * config + scratchpad region >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * +-----------------+------->+------------------+ +-----------------+ >>> + * | BAR0 | | CONFIG REGION | | BAR0 | >>> + * +-----------------+----+ +------------------+<-------+-----------------+ >>> + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | >>> + * +-----------------+ +-->+------------------+<-------+-----------------+ >>> + * | BAR2 | Local Memory | BAR2 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR3 | | BAR3 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR4 | | BAR4 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR5 | | BAR5 | >>> + * +-----------------+ +-----------------+ >>> + * EP CONTROLLER 1 EP CONTROLLER 2 >>> + * >>> + * Free the Local Memory mentioned in the above diagram. After invoking this >>> + * function, any of config + self scratchpad region of HOST1 or peer scratchpad >>> + * region of HOST2 should not be accessed. >>> + */ >>> +static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb) >>> +{ >>> + enum pci_epc_interface_type type; >>> + struct epf_ntb_epc *ntb_epc; >>> + enum pci_barno barno; >>> + struct pci_epf *epf; >>> + >>> + epf = ntb->epf; >>> + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { >>> + ntb_epc = ntb->epc[type]; >>> + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; >>> + if (ntb_epc->reg) >>> + pci_epf_free_space(epf, ntb_epc->reg, barno, type); >>> + } >>> +} >>> + >>> +/** >>> + * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad >>> + * region >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * +-----------------+------->+------------------+ +-----------------+ >>> + * | BAR0 | | CONFIG REGION | | BAR0 | >>> + * +-----------------+----+ +------------------+<-------+-----------------+ >>> + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | >>> + * +-----------------+ +-->+------------------+<-------+-----------------+ >>> + * | BAR2 | Local Memory | BAR2 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR3 | | BAR3 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR4 | | BAR4 | >>> + * +-----------------+ +-----------------+ >>> + * | BAR5 | | BAR5 | >>> + * +-----------------+ +-----------------+ >>> + * EP CONTROLLER 1 EP CONTROLLER 2 >>> + * >>> + * Allocate the Local Memory mentioned in the above diagram. The size of >>> + * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION >>> + * is obtained from "spad-count" configfs entry. >>> + * >>> + * The size of both config region and scratchpad region has to be aligned, >>> + * since the scratchpad region will also be mapped as PEER SCRATCHPAD of >>> + * other host using a separate BAR. >>> + */ >>> +static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + const struct pci_epc_features *peer_epc_features, *epc_features; >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + size_t msix_table_size, pba_size, align; >>> + enum pci_barno peer_barno, barno; >>> + struct epf_ntb_ctrl *ctrl; >>> + u32 spad_size, ctrl_size; >>> + u64 size, peer_size; >>> + struct pci_epf *epf; >>> + struct device *dev; >>> + bool msix_capable; >>> + u32 spad_count; >>> + void *base; >>> + >>> + epf = ntb->epf; >>> + dev = &epf->dev; >>> + ntb_epc = ntb->epc[type]; >>> + >>> + epc_features = ntb_epc->epc_features; >>> + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; >>> + size = epc_features->bar_fixed_size[barno]; >>> + align = epc_features->align; >>> + >>> + peer_ntb_epc = ntb->epc[!type]; >>> + peer_epc_features = peer_ntb_epc->epc_features; >>> + peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; >>> + peer_size = peer_epc_features->bar_fixed_size[peer_barno]; >>> + >>> + /* Check if epc_features is populated incorrectly */ >>> + if ((!IS_ALIGNED(size, align))) >>> + return -EINVAL; >>> + >>> + spad_count = ntb->spad_count; >>> + >>> + ctrl_size = sizeof(struct epf_ntb_ctrl); >>> + spad_size = spad_count * 4; >>> + >>> + msix_capable = epc_features->msix_capable; >>> + if (msix_capable) { >>> + msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count; >>> + ctrl_size = ALIGN(ctrl_size, 8); >>> + ntb_epc->msix_table_offset = ctrl_size; >>> + ntb_epc->msix_bar = barno; >>> + /* Align to QWORD or 8 Bytes */ >>> + pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8); >>> + ctrl_size = ctrl_size + msix_table_size + pba_size; >>> + } >>> + >>> + if (!align) { >>> + ctrl_size = roundup_pow_of_two(ctrl_size); >>> + spad_size = roundup_pow_of_two(spad_size); >>> + } else { >>> + ctrl_size = ALIGN(ctrl_size, align); >>> + spad_size = ALIGN(spad_size, align); >>> + } >>> + >>> + if (peer_size) { >>> + if (peer_size < spad_size) >>> + spad_count = peer_size / 4; >>> + spad_size = peer_size; >>> + } >>> + >>> + /* >>> + * In order to make sure SPAD offset is aligned to its size, >>> + * expand control region size to the size of SPAD if SPAD size >>> + * is greater than control region size. >>> + */ >>> + if (spad_size > ctrl_size) >>> + ctrl_size = spad_size; >>> + >>> + if (!size) >>> + size = ctrl_size + spad_size; >>> + else if (size < ctrl_size + spad_size) >>> + return -EINVAL; >>> + >>> + base = pci_epf_alloc_space(epf, size, barno, align, type); >>> + if (!base) { >>> + dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n", >>> + pci_epc_interface_string(type)); >>> + return -ENOMEM; >>> + } >>> + >>> + ntb_epc->reg = base; >>> + >>> + ctrl = ntb_epc->reg; >>> + ctrl->spad_offset = ctrl_size; >>> + ctrl->spad_count = spad_count; >>> + ctrl->num_mws = ntb->num_mws; >>> + ctrl->db_entry_size = align ? align : 4; >>> + ntb_epc->spad_size = spad_size; >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config + >>> + * scratchpad region for each of PRIMARY and SECONDARY interface >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for >>> + * config + scratchpad region for a specific interface >>> + */ >>> +static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb) >>> +{ >>> + enum pci_epc_interface_type type; >>> + struct device *dev; >>> + int ret; >>> + >>> + dev = &ntb->epf->dev; >>> + >>> + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { >>> + ret = epf_ntb_config_spad_bar_alloc(ntb, type); >>> + if (ret) { >>> + dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address >>> + * space >>> + * @ntb_epc: EPC associated with one of the HOST which holds peers outbound >>> + * address regions >>> + * >>> + * +-----------------+ +---->+----------------+-----------+-----------------+ >>> + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | >>> + * +-----------------+ | +----------------+ +-----------------+ >>> + * | BAR1 | | | Doorbell 2 +---------+ | | >>> + * +-----------------+----+ +----------------+ | | | >>> + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ >>> + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | >>> + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ >>> + * +-----------------+ | |----------------+ | | | | >>> + * | BAR4 | | | | | | +-----------------+ >>> + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| >>> + * | BAR5 | | | | | | +-----------------+ >>> + * +-----------------+ +---->-----------------+ | | | | >>> + * EP CONTROLLER 1 | | | | +-----------------+ >>> + * | | | +---->+ MSI|X ADDRESS 4 | >>> + * +----------------+ | +-----------------+ >>> + * (A) EP CONTROLLER 2 | | | >>> + * (OB SPACE) | | | >>> + * +-------> MW1 | >>> + * | | >>> + * | | >>> + * (B) +-----------------+ >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * +-----------------+ >>> + * PCI Address Space >>> + * (Managed by HOST2) >>> + * >>> + * Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram. >>> + * It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, >>> + * MW4). >>> + */ >>> +static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc) >>> +{ >>> + struct pci_epf_bar *epf_bar; >>> + void __iomem *mw_addr; >>> + phys_addr_t phys_addr; >>> + enum epf_ntb_bar bar; >>> + enum pci_barno barno; >>> + struct pci_epc *epc; >>> + size_t size; >>> + >>> + epc = ntb_epc->epc; >>> + >>> + for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { >>> + barno = ntb_epc->epf_ntb_bar[bar]; >>> + mw_addr = ntb_epc->mw_addr[barno]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + phys_addr = epf_bar->phys_addr; >>> + size = epf_bar->size; >>> + if (mw_addr) { >>> + pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size); >>> + ntb_epc->mw_addr[barno] = NULL; >>> + } >>> + } >>> +} >>> + >>> +/** >>> + * epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR >>> + * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound >>> + * address >>> + * >>> + * +-----------------+ +---->+----------------+-----------+-----------------+ >>> + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | >>> + * +-----------------+ | +----------------+ +-----------------+ >>> + * | BAR1 | | | Doorbell 2 +---------+ | | >>> + * +-----------------+----+ +----------------+ | | | >>> + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ >>> + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | >>> + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ >>> + * +-----------------+ | |----------------+ | | | | >>> + * | BAR4 | | | | | | +-----------------+ >>> + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| >>> + * | BAR5 | | | | | | +-----------------+ >>> + * +-----------------+ +---->-----------------+ | | | | >>> + * EP CONTROLLER 1 | | | | +-----------------+ >>> + * | | | +---->+ MSI|X ADDRESS 4 | >>> + * +----------------+ | +-----------------+ >>> + * (A) EP CONTROLLER 2 | | | >>> + * (OB SPACE) | | | >>> + * +-------> MW1 | >>> + * | | >>> + * | | >>> + * (B) +-----------------+ >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * +-----------------+ >>> + * PCI Address Space >>> + * (Managed by HOST2) >>> + * >>> + * Clear doorbell and memory BARs (remove inbound ATU configuration). In the above >>> + * diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2 >>> + * BAR, MW3 BAR and MW4 BAR). >>> + */ >>> +static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc) >>> +{ >>> + struct pci_epf_bar *epf_bar; >>> + enum epf_ntb_bar bar; >>> + enum pci_barno barno; >>> + struct pci_epc *epc; >>> + u8 func_no; >>> + >>> + epc = ntb_epc->epc; >>> + >>> + func_no = ntb_epc->func_no; >>> + >>> + for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { >>> + barno = ntb_epc->epf_ntb_bar[bar]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + pci_epc_clear_bar(epc, func_no, epf_bar); >>> + } >>> +} >>> + >>> +/** >>> + * epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory >>> + * allocated in peers outbound address space >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and >>> + * epf_ntb_free_peer_mem() which frees up HOST2 outbound memory. >>> + */ >>> +static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + peer_ntb_epc = ntb->epc[!type]; >>> + >>> + epf_ntb_db_mw_bar_clear(ntb_epc); >>> + epf_ntb_free_peer_mem(peer_ntb_epc); >>> +} >>> + >>> +/** >>> + * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Configure MSI/MSI-X capability for each interface with number of >>> + * interrupts equal to "db_count" configfs entry. >>> + */ >>> +static int epf_ntb_configure_interrupt(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + const struct pci_epc_features *epc_features; >>> + bool msix_capable, msi_capable; >>> + struct epf_ntb_epc *ntb_epc; >>> + struct pci_epc *epc; >>> + struct device *dev; >>> + u32 db_count; >>> + u8 func_no; >>> + int ret; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + dev = &ntb->epf->dev; >>> + >>> + epc_features = ntb_epc->epc_features; >>> + msix_capable = epc_features->msix_capable; >>> + msi_capable = epc_features->msi_capable; >>> + >>> + if (!(msix_capable || msi_capable)) { >>> + dev_err(dev, "MSI or MSI-X is required for doorbell\n"); >>> + return -EINVAL; >>> + } >>> + >>> + func_no = ntb_epc->func_no; >>> + >>> + db_count = ntb->db_count; >>> + if (db_count > MAX_DB_COUNT) { >>> + dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT); >>> + return -EINVAL; >>> + } >>> + >>> + ntb->db_count = db_count; >>> + epc = ntb_epc->epc; >>> + >>> + if (msi_capable) { >>> + ret = pci_epc_set_msi(epc, func_no, db_count); >>> + if (ret) { >>> + dev_err(dev, "%s intf: MSI configuration failed\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + } >>> + >>> + if (msix_capable) { >>> + ret = pci_epc_set_msix(epc, func_no, db_count, >>> + ntb_epc->msix_bar, >>> + ntb_epc->msix_table_offset); >>> + if (ret) { >>> + dev_err(dev, "MSI configuration failed\n"); >>> + return ret; >>> + } >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space >>> + * @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound >>> + * address >>> + * @bar: BAR of @ntb_epc in for which memory has to be allocated (could be >>> + * BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4) >>> + * @peer_ntb_epc: EPC associated with HOST whose outbound address space is >>> + * used by @ntb_epc >>> + * @size: Size of the address region that has to be allocated in peers OB SPACE >>> + * >>> + * >>> + * +-----------------+ +---->+----------------+-----------+-----------------+ >>> + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | >>> + * +-----------------+ | +----------------+ +-----------------+ >>> + * | BAR1 | | | Doorbell 2 +---------+ | | >>> + * +-----------------+----+ +----------------+ | | | >>> + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ >>> + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | >>> + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ >>> + * +-----------------+ | |----------------+ | | | | >>> + * | BAR4 | | | | | | +-----------------+ >>> + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| >>> + * | BAR5 | | | | | | +-----------------+ >>> + * +-----------------+ +---->-----------------+ | | | | >>> + * EP CONTROLLER 1 | | | | +-----------------+ >>> + * | | | +---->+ MSI|X ADDRESS 4 | >>> + * +----------------+ | +-----------------+ >>> + * (A) EP CONTROLLER 2 | | | >>> + * (OB SPACE) | | | >>> + * +-------> MW1 | >>> + * | | >>> + * | | >>> + * (B) +-----------------+ >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * | | >>> + * +-----------------+ >>> + * PCI Address Space >>> + * (Managed by HOST2) >>> + * >>> + * Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate >>> + * for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4). >>> + */ >>> +static int epf_ntb_alloc_peer_mem(struct device *dev, >>> + struct epf_ntb_epc *ntb_epc, >>> + enum epf_ntb_bar bar, >>> + struct epf_ntb_epc *peer_ntb_epc, >>> + size_t size) >>> +{ >>> + const struct pci_epc_features *epc_features; >>> + struct pci_epf_bar *epf_bar; >>> + struct pci_epc *peer_epc; >>> + phys_addr_t phys_addr; >>> + void __iomem *mw_addr; >>> + enum pci_barno barno; >>> + size_t align; >>> + >>> + epc_features = ntb_epc->epc_features; >>> + align = epc_features->align; >>> + >>> + if (size < 128) >>> + size = 128; >>> + >>> + if (align) >>> + size = ALIGN(size, align); >>> + else >>> + size = roundup_pow_of_two(size); >>> + >>> + peer_epc = peer_ntb_epc->epc; >>> + mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size); >>> + if (!mw_addr) { >>> + dev_err(dev, "%s intf: Failed to allocate OB address\n", >>> + pci_epc_interface_string(peer_ntb_epc->type)); >>> + return -ENOMEM; >>> + } >>> + >>> + barno = ntb_epc->epf_ntb_bar[bar]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + ntb_epc->mw_addr[barno] = mw_addr; >>> + >>> + epf_bar->phys_addr = phys_addr; >>> + epf_bar->size = size; >>> + epf_bar->barno = barno; >>> + epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates >>> + * memory in OB address space of HOST2 and configures BAR of HOST1 >>> + */ >>> +static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + const struct pci_epc_features *epc_features; >>> + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; >>> + struct pci_epf_bar *epf_bar; >>> + struct epf_ntb_ctrl *ctrl; >>> + u32 num_mws, db_count; >>> + enum epf_ntb_bar bar; >>> + enum pci_barno barno; >>> + struct pci_epc *epc; >>> + struct device *dev; >>> + size_t align; >>> + int ret, i; >>> + u8 func_no; >>> + u64 size; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + peer_ntb_epc = ntb->epc[!type]; >>> + >>> + dev = &ntb->epf->dev; >>> + epc_features = ntb_epc->epc_features; >>> + align = epc_features->align; >>> + func_no = ntb_epc->func_no; >>> + epc = ntb_epc->epc; >>> + num_mws = ntb->num_mws; >>> + db_count = ntb->db_count; >>> + >>> + for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) { >>> + if (bar == BAR_DB_MW1) { >>> + align = align ? align : 4; >>> + size = db_count * align; >>> + size = ALIGN(size, ntb->mws_size[i]); >>> + ctrl = ntb_epc->reg; >>> + ctrl->mw1_offset = size; >>> + size += ntb->mws_size[i]; >>> + } else { >>> + size = ntb->mws_size[i]; >>> + } >>> + >>> + ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar, >>> + peer_ntb_epc, size); >>> + if (ret) { >>> + dev_err(dev, "%s intf: DoorBell mem alloc failed\n", >>> + pci_epc_interface_string(type)); >>> + goto err_alloc_peer_mem; >>> + } >>> + >>> + barno = ntb_epc->epf_ntb_bar[bar]; >>> + epf_bar = &ntb_epc->epf_bar[barno]; >>> + >>> + ret = pci_epc_set_bar(epc, func_no, epf_bar); >>> + if (ret) { >>> + dev_err(dev, "%s intf: DoorBell BAR set failed\n", >>> + pci_epc_interface_string(type)); >>> + goto err_alloc_peer_mem; >>> + } >>> + } >>> + >>> + return 0; >>> + >>> +err_alloc_peer_mem: >>> + epf_ntb_db_mw_bar_cleanup(ntb, type); >>> + >>> + return ret; >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Unbind NTB function device from EPC and relinquish reference to pci_epc >>> + * for each of the interface. >>> + */ >>> +static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + struct epf_ntb_epc *ntb_epc; >>> + struct pci_epc *epc; >>> + struct pci_epf *epf; >>> + >>> + if (type < 0) >>> + return; >>> + >>> + epf = ntb->epf; >>> + ntb_epc = ntb->epc[type]; >>> + if (!ntb_epc) >>> + return; >>> + epc = ntb_epc->epc; >>> + pci_epc_remove_epf(epc, epf, type); >>> + pci_epc_put(epc); >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_destroy() - Cleanup NTB EPC interface >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces >>> + */ >>> +static void epf_ntb_epc_destroy(struct epf_ntb *ntb) >>> +{ >>> + enum pci_epc_interface_type type; >>> + >>> + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) >>> + epf_ntb_epc_destroy_interface(ntb, type); >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @epc: struct pci_epc to which a particular NTB interface should be associated >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Allocate memory for NTB EPC interface and initialize it. >>> + */ >>> +static int epf_ntb_epc_create_interface(struct epf_ntb *ntb, >>> + struct pci_epc *epc, >>> + enum pci_epc_interface_type type) >>> +{ >>> + const struct pci_epc_features *epc_features; >>> + struct pci_epf_bar *epf_bar; >>> + struct epf_ntb_epc *ntb_epc; >>> + struct pci_epf *epf; >>> + struct device *dev; >>> + u8 func_no; >>> + >>> + dev = &ntb->epf->dev; >>> + >>> + ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL); >>> + if (!ntb_epc) >>> + return -ENOMEM; >>> + >>> + epf = ntb->epf; >>> + if (type == PRIMARY_INTERFACE) { >>> + func_no = epf->func_no; >>> + epf_bar = epf->bar; >>> + } else { >>> + func_no = epf->sec_epc_func_no; >>> + epf_bar = epf->sec_epc_bar; >>> + } >>> + >>> + ntb_epc->linkup = false; >>> + ntb_epc->epc = epc; >>> + ntb_epc->func_no = func_no; >>> + ntb_epc->type = type; >>> + ntb_epc->epf_bar = epf_bar; >>> + ntb_epc->epf_ntb = ntb; >>> + >>> + epc_features = pci_epc_get_features(epc, func_no); >>> + if (!epc_features) >>> + return -EINVAL; >>> + ntb_epc->epc_features = epc_features; >>> + >>> + ntb->epc[type] = ntb_epc; >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_create() - Create and initialize NTB EPC interface >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * Get a reference to EPC device and bind NTB function device to that EPC >>> + * for each of the interface. It is also a wrapper to >>> + * epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface >>> + * and initialize it >>> + */ >>> +static int epf_ntb_epc_create(struct epf_ntb *ntb) >>> +{ >>> + struct pci_epf *epf; >>> + struct device *dev; >>> + int ret; >>> + >>> + epf = ntb->epf; >>> + dev = &epf->dev; >>> + >>> + ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE); >>> + if (ret) { >>> + dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n"); >>> + return ret; >>> + } >>> + >>> + ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc, >>> + SECONDARY_INTERFACE); >>> + if (ret) { >>> + dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n"); >>> + goto err_epc_create; >>> + } >>> + >>> + return 0; >>> + >>> +err_epc_create: >>> + epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE); >>> + >>> + return ret; >>> +} >>> + >>> +/** >>> + * epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of >>> + * the NTB constructs (scratchpad region, doorbell, memorywindow) >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD, >>> + * BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4. >>> + */ >>> +static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + const struct pci_epc_features *epc_features; >>> + struct epf_ntb_epc *ntb_epc; >>> + enum pci_barno barno; >>> + enum epf_ntb_bar bar; >>> + struct device *dev; >>> + u32 num_mws; >>> + int i; >>> + >>> + barno = BAR_0; >>> + ntb_epc = ntb->epc[type]; >>> + num_mws = ntb->num_mws; >>> + dev = &ntb->epf->dev; >>> + epc_features = ntb_epc->epc_features; >>> + >>> + /* These are required BARs which are mandatory for NTB functionality */ >>> + for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) { >>> + barno = pci_epc_get_next_free_bar(epc_features, barno); >>> + if (barno < 0) { >>> + dev_err(dev, "%s intf: Fail to get NTB function BAR\n", >>> + pci_epc_interface_string(type)); >>> + return barno; >>> + } >>> + ntb_epc->epf_ntb_bar[bar] = barno; >>> + } >>> + >>> + /* These are optional BARs which don't impact NTB functionality */ >>> + for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) { >>> + barno = pci_epc_get_next_free_bar(epc_features, barno); >>> + if (barno < 0) { >>> + ntb->num_mws = i; >>> + dev_dbg(dev, "BAR not available for > MW%d\n", i + 1); >>> + } >>> + ntb_epc->epf_ntb_bar[bar] = barno; >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB >>> + * constructs (scratchpad region, doorbell, memorywindow) >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs >>> + * to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2, >>> + * BAR_MW3 and BAR_MW4 for all the interfaces. >>> + */ >>> +static int epf_ntb_init_epc_bar(struct epf_ntb *ntb) >>> +{ >>> + enum pci_epc_interface_type type; >>> + struct device *dev; >>> + int ret; >>> + >>> + dev = &ntb->epf->dev; >>> + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { >>> + ret = epf_ntb_init_epc_bar_interface(ntb, type); >>> + if (ret) { >>> + dev_err(dev, "Fail to init EPC bar for %s interface\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_init_interface() - Initialize NTB interface >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Wrapper to initialize a particular EPC interface and start the workqueue >>> + * to check for commands from host. This function will write to the >>> + * EP controller HW for configuring it. >>> + */ >>> +static int epf_ntb_epc_init_interface(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + struct epf_ntb_epc *ntb_epc; >>> + struct pci_epc *epc; >>> + struct pci_epf *epf; >>> + struct device *dev; >>> + u8 func_no; >>> + int ret; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + epf = ntb->epf; >>> + dev = &epf->dev; >>> + epc = ntb_epc->epc; >>> + func_no = ntb_epc->func_no; >>> + >>> + ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]); >>> + if (ret) { >>> + dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n", >>> + pci_epc_interface_string(type)); >>> + return ret; >>> + } >>> + >>> + ret = epf_ntb_peer_spad_bar_set(ntb, type); >>> + if (ret) { >>> + dev_err(dev, "%s intf: Peer SPAD BAR init failed\n", >>> + pci_epc_interface_string(type)); >>> + goto err_peer_spad_bar_init; >>> + } >>> + >>> + ret = epf_ntb_configure_interrupt(ntb, type); >>> + if (ret) { >>> + dev_err(dev, "%s intf: Interrupt configuration failed\n", >>> + pci_epc_interface_string(type)); >>> + goto err_peer_spad_bar_init; >>> + } >>> + >>> + ret = epf_ntb_db_mw_bar_init(ntb, type); >>> + if (ret) { >>> + dev_err(dev, "%s intf: DB/MW BAR init failed\n", >>> + pci_epc_interface_string(type)); >>> + goto err_db_mw_bar_init; >>> + } >>> + >>> + ret = pci_epc_write_header(epc, func_no, epf->header); >>> + if (ret) { >>> + dev_err(dev, "%s intf: Configuration header write failed\n", >>> + pci_epc_interface_string(type)); >>> + goto err_write_header; >>> + } >>> + >>> + INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler); >>> + queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work); >>> + >>> + return 0; >>> + >>> +err_write_header: >>> + epf_ntb_db_mw_bar_cleanup(ntb, type); >>> + >>> +err_db_mw_bar_init: >>> + epf_ntb_peer_spad_bar_clear(ntb->epc[type]); >>> + >>> +err_peer_spad_bar_init: >>> + epf_ntb_config_sspad_bar_clear(ntb->epc[type]); >>> + >>> + return ret; >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_cleanup_interface() - Cleanup NTB interface >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * @type: PRIMARY interface or SECONDARY interface >>> + * >>> + * Wrapper to cleanup a particular NTB interface. >>> + */ >>> +static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb, >>> + enum pci_epc_interface_type type) >>> +{ >>> + struct epf_ntb_epc *ntb_epc; >>> + >>> + if (type < 0) >>> + return; >>> + >>> + ntb_epc = ntb->epc[type]; >>> + cancel_delayed_work(&ntb_epc->cmd_handler); >>> + epf_ntb_db_mw_bar_cleanup(ntb, type); >>> + epf_ntb_peer_spad_bar_clear(ntb_epc); >>> + epf_ntb_config_sspad_bar_clear(ntb_epc); >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * Wrapper to cleanup all NTB interfaces. >>> + */ >>> +static void epf_ntb_epc_cleanup(struct epf_ntb *ntb) >>> +{ >>> + enum pci_epc_interface_type type; >>> + >>> + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) >>> + epf_ntb_epc_cleanup_interface(ntb, type); >>> +} >>> + >>> +/** >>> + * epf_ntb_epc_init() - Initialize all NTB interfaces >>> + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 >>> + * >>> + * Wrapper to initialize all NTB interface and start the workqueue >>> + * to check for commands from host. >>> + */ >>> +static int epf_ntb_epc_init(struct epf_ntb *ntb) >>> +{ >>> + enum pci_epc_interface_type type; >>> + struct device *dev; >>> + int ret; >>> + >>> + dev = &ntb->epf->dev; >>> + >>> + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { >>> + ret = epf_ntb_epc_init_interface(ntb, type); >>> + if (ret) { >>> + dev_err(dev, "%s intf: Failed to initialize\n", >>> + pci_epc_interface_string(type)); >>> + goto err_init_type; >>> + } >>> + } >>> + >>> + return 0; >>> + >>> +err_init_type: >>> + epf_ntb_epc_cleanup_interface(ntb, type - 1); >>> + >>> + return ret; >>> +} >>> + >>> +/** >>> + * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality >>> + * @epf: NTB endpoint function device >>> + * >>> + * Initialize both the endpoint controllers associated with NTB function device. >>> + * Invoked when a primary interface or secondary interface is bound to EPC >>> + * device. This function will succeed only when EPC is bound to both the >>> + * interfaces. >>> + */ >>> +static int epf_ntb_bind(struct pci_epf *epf) >>> +{ >>> + struct epf_ntb *ntb = epf_get_drvdata(epf); >>> + struct device *dev = &epf->dev; >>> + int ret; >>> + >>> + if (!epf->epc) { >>> + dev_dbg(dev, "PRIMARY EPC interface not yet bound\n"); >>> + return 0; >>> + } >>> + >>> + if (!epf->sec_epc) { >>> + dev_dbg(dev, "SECONDARY EPC interface not yet bound\n"); >>> + return 0; >>> + } >>> + >>> + ret = epf_ntb_epc_create(ntb); >>> + if (ret) { >>> + dev_err(dev, "Failed to create NTB EPC\n"); >>> + return ret; >>> + } >>> + >>> + ret = epf_ntb_init_epc_bar(ntb); >>> + if (ret) { >>> + dev_err(dev, "Failed to create NTB EPC\n"); >>> + goto err_bar_init; >>> + } >>> + >>> + ret = epf_ntb_config_spad_bar_alloc_interface(ntb); >>> + if (ret) { >>> + dev_err(dev, "Failed to allocate BAR memory\n"); >>> + goto err_bar_alloc; >>> + } >>> + >>> + ret = epf_ntb_epc_init(ntb); >>> + if (ret) { >>> + dev_err(dev, "Failed to initialize EPC\n"); >>> + goto err_bar_alloc; >>> + } >>> + >>> + epf_set_drvdata(epf, ntb); >>> + >>> + return 0; >>> + >>> +err_bar_alloc: >>> + epf_ntb_config_spad_bar_free(ntb); >>> + >>> +err_bar_init: >>> + epf_ntb_epc_destroy(ntb); >>> + >>> + return ret; >>> +} >>> + >>> +/** >>> + * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind() >>> + * @epf: NTB endpoint function device >>> + * >>> + * Cleanup the initialization from epf_ntb_bind() >>> + */ >>> +static void epf_ntb_unbind(struct pci_epf *epf) >>> +{ >>> + struct epf_ntb *ntb = epf_get_drvdata(epf); >>> + >>> + epf_ntb_epc_cleanup(ntb); >>> + epf_ntb_config_spad_bar_free(ntb); >>> + epf_ntb_epc_destroy(ntb); >>> +} >>> + >>> +#define EPF_NTB_R(_name) \ >>> +static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ >>> + char *page) \ >>> +{ \ >>> + struct config_group *group = to_config_group(item); \ >>> + struct epf_ntb *ntb = to_epf_ntb(group); \ >>> + \ >>> + return sprintf(page, "%d\n", ntb->_name); \ >>> +} >>> + >>> +#define EPF_NTB_W(_name) \ >>> +static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ >>> + const char *page, size_t len) \ >>> +{ \ >>> + struct config_group *group = to_config_group(item); \ >>> + struct epf_ntb *ntb = to_epf_ntb(group); \ >>> + u32 val; \ >>> + int ret; \ >>> + \ >>> + ret = kstrtou32(page, 0, &val); \ >>> + if (ret) \ >>> + return ret; \ >>> + \ >>> + ntb->_name = val; \ >>> + \ >>> + return len; \ >>> +} >>> + >>> +#define EPF_NTB_MW_R(_name) \ >>> +static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ >>> + char *page) \ >>> +{ \ >>> + struct config_group *group = to_config_group(item); \ >>> + struct epf_ntb *ntb = to_epf_ntb(group); \ >>> + int win_no; \ >>> + \ >>> + sscanf(#_name, "mw%d", &win_no); \ >>> + \ >>> + return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]); \ >>> +} >>> + >>> +#define EPF_NTB_MW_W(_name) \ >>> +static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ >>> + const char *page, size_t len) \ >>> +{ \ >>> + struct config_group *group = to_config_group(item); \ >>> + struct epf_ntb *ntb = to_epf_ntb(group); \ >>> + struct device *dev = &ntb->epf->dev; \ >>> + int win_no; \ >>> + u64 val; \ >>> + int ret; \ >>> + \ >>> + ret = kstrtou64(page, 0, &val); \ >>> + if (ret) \ >>> + return ret; \ >>> + \ >>> + if (sscanf(#_name, "mw%d", &win_no) != 1) \ >>> + return -EINVAL; \ >>> + \ >>> + if (ntb->num_mws < win_no) { \ >>> + dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \ >>> + return -EINVAL; \ >>> + } \ >>> + \ >>> + ntb->mws_size[win_no - 1] = val; \ >>> + \ >>> + return len; \ >>> +} >>> + >>> +static ssize_t epf_ntb_num_mws_store(struct config_item *item, >>> + const char *page, size_t len) >>> +{ >>> + struct config_group *group = to_config_group(item); >>> + struct epf_ntb *ntb = to_epf_ntb(group); >>> + u32 val; >>> + int ret; >>> + >>> + ret = kstrtou32(page, 0, &val); >>> + if (ret) >>> + return ret; >>> + >>> + if (val > MAX_MW) >>> + return -EINVAL; >>> + >>> + ntb->num_mws = val; >>> + >>> + return len; >>> +} >>> + >>> +EPF_NTB_R(spad_count) >>> +EPF_NTB_W(spad_count) >>> +EPF_NTB_R(db_count) >>> +EPF_NTB_W(db_count) >>> +EPF_NTB_R(num_mws) >>> +EPF_NTB_MW_R(mw1) >>> +EPF_NTB_MW_W(mw1) >>> +EPF_NTB_MW_R(mw2) >>> +EPF_NTB_MW_W(mw2) >>> +EPF_NTB_MW_R(mw3) >>> +EPF_NTB_MW_W(mw3) >>> +EPF_NTB_MW_R(mw4) >>> +EPF_NTB_MW_W(mw4) >>> + >>> +CONFIGFS_ATTR(epf_ntb_, spad_count); >>> +CONFIGFS_ATTR(epf_ntb_, db_count); >>> +CONFIGFS_ATTR(epf_ntb_, num_mws); >>> +CONFIGFS_ATTR(epf_ntb_, mw1); >>> +CONFIGFS_ATTR(epf_ntb_, mw2); >>> +CONFIGFS_ATTR(epf_ntb_, mw3); >>> +CONFIGFS_ATTR(epf_ntb_, mw4); >>> + >>> +static struct configfs_attribute *epf_ntb_attrs[] = { >>> + &epf_ntb_attr_spad_count, >>> + &epf_ntb_attr_db_count, >>> + &epf_ntb_attr_num_mws, >>> + &epf_ntb_attr_mw1, >>> + &epf_ntb_attr_mw2, >>> + &epf_ntb_attr_mw3, >>> + &epf_ntb_attr_mw4, >>> + NULL, >>> +}; >>> + >>> +static const struct config_item_type ntb_group_type = { >>> + .ct_attrs = epf_ntb_attrs, >>> + .ct_owner = THIS_MODULE, >>> +}; >>> + >>> +/** >>> + * epf_ntb_add_cfs() - Add configfs directory specific to NTB >>> + * @epf: NTB endpoint function device >>> + * >>> + * Add configfs directory specific to NTB. This directory will hold >>> + * NTB specific properties like db_count, spad_count, num_mws etc., >>> + */ >>> +static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf, >>> + struct config_group *group) >>> +{ >>> + struct epf_ntb *ntb = epf_get_drvdata(epf); >>> + struct config_group *ntb_group = &ntb->group; >>> + struct device *dev = &epf->dev; >>> + >>> + config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type); >>> + >>> + return ntb_group; >>> +} >>> + >>> +/** >>> + * epf_ntb_probe() - Probe NTB function driver >>> + * @epf: NTB endpoint function device >>> + * >>> + * Probe NTB function driver when endpoint function bus detects a NTB >>> + * endpoint function. >>> + */ >>> +static int epf_ntb_probe(struct pci_epf *epf) >>> +{ >>> + struct epf_ntb *ntb; >>> + struct device *dev; >>> + >>> + dev = &epf->dev; >>> + >>> + ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL); >>> + if (!ntb) >>> + return -ENOMEM; >>> + >>> + epf->header = &epf_ntb_header; >>> + ntb->epf = epf; >>> + epf_set_drvdata(epf, ntb); >>> + >>> + return 0; >>> +} >>> + >>> +static struct pci_epf_ops epf_ntb_ops = { >>> + .bind = epf_ntb_bind, >>> + .unbind = epf_ntb_unbind, >>> + .add_cfs = epf_ntb_add_cfs, >>> +}; >>> + >>> +static const struct pci_epf_device_id epf_ntb_ids[] = { >>> + { >>> + .name = "pci_epf_ntb", >>> + }, >>> + {}, >>> +}; >>> + >>> +static struct pci_epf_driver epf_ntb_driver = { >>> + .driver.name = "pci_epf_ntb", >>> + .probe = epf_ntb_probe, >>> + .id_table = epf_ntb_ids, >>> + .ops = &epf_ntb_ops, >>> + .owner = THIS_MODULE, >>> +}; >>> + >>> +static int __init epf_ntb_init(void) >>> +{ >>> + int ret; >>> + >>> + kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM | >>> + WQ_HIGHPRI, 0); >>> + ret = pci_epf_register_driver(&epf_ntb_driver); >>> + if (ret) { >>> + destroy_workqueue(kpcintb_workqueue); >>> + pr_err("Failed to register pci epf ntb driver --> %d\n", ret); >>> + return ret; >>> + } >>> + >>> + return 0; >>> +} >>> +module_init(epf_ntb_init); >>> + >>> +static void __exit epf_ntb_exit(void) >>> +{ >>> + pci_epf_unregister_driver(&epf_ntb_driver); >>> + destroy_workqueue(kpcintb_workqueue); >>> +} >>> +module_exit(epf_ntb_exit); >>> + >>> +MODULE_DESCRIPTION("PCI EPF NTB DRIVER"); >>> +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@xxxxxx>"); >>> +MODULE_LICENSE("GPL v2"); >>> >