On Thu, Feb 04, 2021 at 07:15:39PM +0530, Kishon Vijay Abraham I wrote: > Hi Lorenzo, > > On 04/02/21 3:28 pm, Lorenzo Pieralisi wrote: > > On Tue, Feb 02, 2021 at 12:12:55PM -0800, Randy Dunlap wrote: > >> The pci-epf-ntb driver uses configfs APIs, so it should depend on > >> CONFIGFS_FS to prevent build errors. > >> > >> ld: drivers/pci/endpoint/functions/pci-epf-ntb.o: in function `epf_ntb_add_cfs': > >> pci-epf-ntb.c:(.text+0x1b): undefined reference to `config_group_init_type_name' > >> > >> Fixes: 7dc64244f9e9 ("PCI: endpoint: Add EP function driver to provide NTB functionality") > >> > >> Signed-off-by: Randy Dunlap <rdunlap@xxxxxxxxxxxxx> > >> Cc: Kishon Vijay Abraham I <kishon@xxxxxx> > >> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@xxxxxxx> > >> Cc: linux-pci@xxxxxxxxxxxxxxx > >> --- > >> You may switch to 'select CONFIG_FS_FS' if you feel strongly about it. > > > > Kishon ? > > There seems to be some issue in the version that got merged. The v11 > patch series had this fixed [1] by using select CONFIGFS_FS. However > whatever was merged seems to be v10 which didn't have select CONFIGFS_FS > [2]. I had sent a private mail to you pointing the same (attached for > reference, not sure if it was delivered). I think that Bjorn has not pulled my pci/ntb branch yet (so the one in -next is v10 indeed, my one should be v11, please check). Thanks, Lorenzo > Thanks > Kishon > > [1] -> > https://lore.kernel.org/linux-doc/20210201195809.7342-14-kishon@xxxxxx/ > > [2] -> > https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/tree/drivers/pci/endpoint/functions/Kconfig > > > > Thanks, > > Lorenzo > > > >> drivers/pci/endpoint/functions/Kconfig | 1 + > >> 1 file changed, 1 insertion(+) > >> > >> --- linux-next-20210202.orig/drivers/pci/endpoint/functions/Kconfig > >> +++ linux-next-20210202/drivers/pci/endpoint/functions/Kconfig > >> @@ -16,6 +16,7 @@ config PCI_EPF_TEST > >> config PCI_EPF_NTB > >> tristate "PCI Endpoint NTB driver" > >> depends on PCI_ENDPOINT > >> + depends on CONFIGFS_FS > >> help > >> Select this configuration option to enable the NTB driver > >> for PCI Endpoint. NTB driver implements NTB controller > Date: Tue, 2 Feb 2021 21:57:37 +0530 > From: Kishon Vijay Abraham I <kishon@xxxxxx> > To: Lorenzo Pieralisi <lorenzo.pieralisi@xxxxxxx> > Subject: Re: [PATCH v11 13/17] PCI: endpoint: Add EP function driver to > provide NTB functionality > User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 > Thunderbird/68.10.0 > > Hi Lorenzo, > > On 02/02/21 1:28 am, Kishon Vijay Abraham I wrote: > > Add a new endpoint function driver to provide NTB functionality > > using multiple PCIe endpoint instances. > > > > Signed-off-by: Kishon Vijay Abraham I <kishon@xxxxxx> > > [arnd@xxxxxxxx: Select configfs dependency] > > Signed-off-by: Arnd Bergmann <arnd@xxxxxxxx> > > [yebin10@xxxxxxxxxx: Fix unused but set variables] > > Signed-off-by: Ye Bin <yebin10@xxxxxxxxxx> > > [geert+renesas@xxxxxxxxx: Explain NTB in PCI_EPF_NTB help text] > > Signed-off-by: Geert Uytterhoeven <geert+renesas@xxxxxxxxx> > > --- > > drivers/pci/endpoint/functions/Kconfig | 13 + > > drivers/pci/endpoint/functions/Makefile | 1 + > > drivers/pci/endpoint/functions/pci-epf-ntb.c | 2128 ++++++++++++++++++ > > 3 files changed, 2142 insertions(+) > > create mode 100644 drivers/pci/endpoint/functions/pci-epf-ntb.c > > > > diff --git a/drivers/pci/endpoint/functions/Kconfig b/drivers/pci/endpoint/functions/Kconfig > > index 8820d0f7ec77..5f1242ca2f4e 100644 > > --- a/drivers/pci/endpoint/functions/Kconfig > > +++ b/drivers/pci/endpoint/functions/Kconfig > > @@ -12,3 +12,16 @@ config PCI_EPF_TEST > > for PCI Endpoint. > > > > If in doubt, say "N" to disable Endpoint test driver. > > + > > +config PCI_EPF_NTB > > + tristate "PCI Endpoint NTB driver" > > + depends on PCI_ENDPOINT > > + select CONFIGFS_FS > > I'm seeing some difference between here and linux-next. > https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/tree/drivers/pci/endpoint/functions/Kconfig > > I see "select CONFIGFS_FS" missing in linux-next. > > Thank You, > Kishon > > > + help > > + Select this configuration option to enable the Non-Transparent > > + Bridge (NTB) driver for PCI Endpoint. NTB driver implements NTB > > + controller functionality using multiple PCIe endpoint instances. > > + It can support NTB endpoint function devices created using > > + device tree. > > + > > + If in doubt, say "N" to disable Endpoint NTB driver. > > diff --git a/drivers/pci/endpoint/functions/Makefile b/drivers/pci/endpoint/functions/Makefile > > index d6fafff080e2..96ab932a537a 100644 > > --- a/drivers/pci/endpoint/functions/Makefile > > +++ b/drivers/pci/endpoint/functions/Makefile > > @@ -4,3 +4,4 @@ > > # > > > > obj-$(CONFIG_PCI_EPF_TEST) += pci-epf-test.o > > +obj-$(CONFIG_PCI_EPF_NTB) += pci-epf-ntb.o > > diff --git a/drivers/pci/endpoint/functions/pci-epf-ntb.c b/drivers/pci/endpoint/functions/pci-epf-ntb.c > > new file mode 100644 > > index 000000000000..338148cf56f5 > > --- /dev/null > > +++ b/drivers/pci/endpoint/functions/pci-epf-ntb.c > > @@ -0,0 +1,2128 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > +/** > > + * Endpoint Function Driver to implement Non-Transparent Bridge functionality > > + * > > + * Copyright (C) 2020 Texas Instruments > > + * Author: Kishon Vijay Abraham I <kishon@xxxxxx> > > + */ > > + > > +/* > > + * The PCI NTB function driver configures the SoC with multiple PCIe Endpoint > > + * (EP) controller instances (see diagram below) in such a way that > > + * transactions from one EP controller are routed to the other EP controller. > > + * Once PCI NTB function driver configures the SoC with multiple EP instances, > > + * HOST1 and HOST2 can communicate with each other using SoC as a bridge. > > + * > > + * +-------------+ +-------------+ > > + * | | | | > > + * | HOST1 | | HOST2 | > > + * | | | | > > + * +------^------+ +------^------+ > > + * | | > > + * | | > > + * +---------|-------------------------------------------------|---------+ > > + * | +------v------+ +------v------+ | > > + * | | | | | | > > + * | | EP | | EP | | > > + * | | CONTROLLER1 | | CONTROLLER2 | | > > + * | | <-----------------------------------> | | > > + * | | | | | | > > + * | | | | | | > > + * | | | SoC With Multiple EP Instances | | | > > + * | | | (Configured using NTB Function) | | | > > + * | +-------------+ +-------------+ | > > + * +---------------------------------------------------------------------+ > > + */ > > + > > +#include <linux/delay.h> > > +#include <linux/io.h> > > +#include <linux/module.h> > > +#include <linux/slab.h> > > + > > +#include <linux/pci-epc.h> > > +#include <linux/pci-epf.h> > > + > > +static struct workqueue_struct *kpcintb_workqueue; > > + > > +#define COMMAND_CONFIGURE_DOORBELL 1 > > +#define COMMAND_TEARDOWN_DOORBELL 2 > > +#define COMMAND_CONFIGURE_MW 3 > > +#define COMMAND_TEARDOWN_MW 4 > > +#define COMMAND_LINK_UP 5 > > +#define COMMAND_LINK_DOWN 6 > > + > > +#define COMMAND_STATUS_OK 1 > > +#define COMMAND_STATUS_ERROR 2 > > + > > +#define LINK_STATUS_UP BIT(0) > > + > > +#define SPAD_COUNT 64 > > +#define DB_COUNT 4 > > +#define NTB_MW_OFFSET 2 > > +#define DB_COUNT_MASK GENMASK(15, 0) > > +#define MSIX_ENABLE BIT(16) > > +#define MAX_DB_COUNT 32 > > +#define MAX_MW 4 > > + > > +enum epf_ntb_bar { > > + BAR_CONFIG, > > + BAR_PEER_SPAD, > > + BAR_DB_MW1, > > + BAR_MW2, > > + BAR_MW3, > > + BAR_MW4, > > +}; > > + > > +struct epf_ntb { > > + u32 num_mws; > > + u32 db_count; > > + u32 spad_count; > > + struct pci_epf *epf; > > + u64 mws_size[MAX_MW]; > > + struct config_group group; > > + struct epf_ntb_epc *epc[2]; > > +}; > > + > > +#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group) > > + > > +struct epf_ntb_epc { > > + u8 func_no; > > + bool linkup; > > + bool is_msix; > > + int msix_bar; > > + u32 spad_size; > > + struct pci_epc *epc; > > + struct epf_ntb *epf_ntb; > > + void __iomem *mw_addr[6]; > > + size_t msix_table_offset; > > + struct epf_ntb_ctrl *reg; > > + struct pci_epf_bar *epf_bar; > > + enum pci_barno epf_ntb_bar[6]; > > + struct delayed_work cmd_handler; > > + enum pci_epc_interface_type type; > > + const struct pci_epc_features *epc_features; > > +}; > > + > > +struct epf_ntb_ctrl { > > + u32 command; > > + u32 argument; > > + u16 command_status; > > + u16 link_status; > > + u32 topology; > > + u64 addr; > > + u64 size; > > + u32 num_mws; > > + u32 mw1_offset; > > + u32 spad_offset; > > + u32 spad_count; > > + u32 db_entry_size; > > + u32 db_data[MAX_DB_COUNT]; > > + u32 db_offset[MAX_DB_COUNT]; > > +} __packed; > > + > > +static struct pci_epf_header epf_ntb_header = { > > + .vendorid = PCI_ANY_ID, > > + .deviceid = PCI_ANY_ID, > > + .baseclass_code = PCI_BASE_CLASS_MEMORY, > > + .interrupt_pin = PCI_INTERRUPT_INTA, > > +}; > > + > > +/** > > + * epf_ntb_link_up() - Raise link_up interrupt to both the hosts > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @link_up: true or false indicating Link is UP or Down > > + * > > + * Once NTB function in HOST1 and the NTB function in HOST2 invoke > > + * ntb_link_enable(), this NTB function driver will trigger a link event to > > + * the NTB client in both the hosts. > > + */ > > +static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up) > > +{ > > + enum pci_epc_interface_type type; > > + enum pci_epc_irq_type irq_type; > > + struct epf_ntb_epc *ntb_epc; > > + struct epf_ntb_ctrl *ctrl; > > + struct pci_epc *epc; > > + bool is_msix; > > + u8 func_no; > > + int ret; > > + > > + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { > > + ntb_epc = ntb->epc[type]; > > + epc = ntb_epc->epc; > > + func_no = ntb_epc->func_no; > > + is_msix = ntb_epc->is_msix; > > + ctrl = ntb_epc->reg; > > + if (link_up) > > + ctrl->link_status |= LINK_STATUS_UP; > > + else > > + ctrl->link_status &= ~LINK_STATUS_UP; > > + irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI; > > + ret = pci_epc_raise_irq(epc, func_no, irq_type, 1); > > + if (ret) { > > + dev_err(&epc->dev, > > + "%s intf: Failed to raise Link Up IRQ\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_configure_mw() - Configure the Outbound Address Space for one host > > + * to access the memory window of other host > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * @mw: Index of the memory window (either 0, 1, 2 or 3) > > + * > > + * +-----------------+ +---->+----------------+-----------+-----------------+ > > + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | > > + * +-----------------+ | +----------------+ +-----------------+ > > + * | BAR1 | | | Doorbell 2 +---------+ | | > > + * +-----------------+----+ +----------------+ | | | > > + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ > > + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | > > + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ > > + * +-----------------+ | |----------------+ | | | | > > + * | BAR4 | | | | | | +-----------------+ > > + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| > > + * | BAR5 | | | | | | +-----------------+ > > + * +-----------------+ +---->-----------------+ | | | | > > + * EP CONTROLLER 1 | | | | +-----------------+ > > + * | | | +---->+ MSI|X ADDRESS 4 | > > + * +----------------+ | +-----------------+ > > + * (A) EP CONTROLLER 2 | | | > > + * (OB SPACE) | | | > > + * +-------> MW1 | > > + * | | > > + * | | > > + * (B) +-----------------+ > > + * | | > > + * | | > > + * | | > > + * | | > > + * | | > > + * +-----------------+ > > + * PCI Address Space > > + * (Managed by HOST2) > > + * > > + * This function performs stage (B) in the above diagram (see MW1) i.e., map OB > > + * address space of memory window to PCI address space. > > + * > > + * This operation requires 3 parameters > > + * 1) Address in the outbound address space > > + * 2) Address in the PCI Address space > > + * 3) Size of the address region to be mapped > > + * > > + * The address in the outbound address space (for MW1, MW2, MW3 and MW4) is > > + * stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3 > > + * BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This > > + * is populated in epf_ntb_alloc_peer_mem() in this driver. > > + * > > + * The address and size of the PCI address region that has to be mapped would > > + * be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is > > + * connected to HOST2. > > + * > > + * Please note Memory window1 (MW1) and Doorbell registers together will be > > + * mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's > > + * used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1], > > + * epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2]. > > + */ > > +static int epf_ntb_configure_mw(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type, u32 mw) > > +{ > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + struct pci_epf_bar *peer_epf_bar; > > + enum pci_barno peer_barno; > > + struct epf_ntb_ctrl *ctrl; > > + phys_addr_t phys_addr; > > + struct pci_epc *epc; > > + u64 addr, size; > > + int ret = 0; > > + u8 func_no; > > + > > + ntb_epc = ntb->epc[type]; > > + epc = ntb_epc->epc; > > + > > + peer_ntb_epc = ntb->epc[!type]; > > + peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; > > + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; > > + > > + phys_addr = peer_epf_bar->phys_addr; > > + ctrl = ntb_epc->reg; > > + addr = ctrl->addr; > > + size = ctrl->size; > > + if (mw + NTB_MW_OFFSET == BAR_DB_MW1) > > + phys_addr += ctrl->mw1_offset; > > + > > + if (size > ntb->mws_size[mw]) { > > + dev_err(&epc->dev, > > + "%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n", > > + pci_epc_interface_string(type), mw, size, > > + ntb->mws_size[mw]); > > + ret = -EINVAL; > > + goto err_invalid_size; > > + } > > + > > + func_no = ntb_epc->func_no; > > + > > + ret = pci_epc_map_addr(epc, func_no, phys_addr, addr, size); > > + if (ret) > > + dev_err(&epc->dev, > > + "%s intf: Failed to map memory window %d address\n", > > + pci_epc_interface_string(type), mw); > > + > > +err_invalid_size: > > + > > + return ret; > > +} > > + > > +/** > > + * epf_ntb_teardown_mw() - Teardown the configured OB ATU > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * @mw: Index of the memory window (either 0, 1, 2 or 3) > > + * > > + * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using > > + * pci_epc_unmap_addr() > > + */ > > +static void epf_ntb_teardown_mw(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type, u32 mw) > > +{ > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + struct pci_epf_bar *peer_epf_bar; > > + enum pci_barno peer_barno; > > + struct epf_ntb_ctrl *ctrl; > > + phys_addr_t phys_addr; > > + struct pci_epc *epc; > > + u8 func_no; > > + > > + ntb_epc = ntb->epc[type]; > > + epc = ntb_epc->epc; > > + > > + peer_ntb_epc = ntb->epc[!type]; > > + peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; > > + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; > > + > > + phys_addr = peer_epf_bar->phys_addr; > > + ctrl = ntb_epc->reg; > > + if (mw + NTB_MW_OFFSET == BAR_DB_MW1) > > + phys_addr += ctrl->mw1_offset; > > + func_no = ntb_epc->func_no; > > + > > + pci_epc_unmap_addr(epc, func_no, phys_addr); > > +} > > + > > +/** > > + * epf_ntb_configure_msi() - Map OB address space to MSI address > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * @db_count: Number of doorbell interrupts to map > > + * > > + *+-----------------+ +----->+----------------+-----------+-----------------+ > > + *| BAR0 | | | Doorbell 1 +---+-------> MSI ADDRESS | > > + *+-----------------+ | +----------------+ | +-----------------+ > > + *| BAR1 | | | Doorbell 2 +---+ | | > > + *+-----------------+----+ +----------------+ | | | > > + *| BAR2 | | Doorbell 3 +---+ | | > > + *+-----------------+----+ +----------------+ | | | > > + *| BAR3 | | | Doorbell 4 +---+ | | > > + *+-----------------+ | |----------------+ | | > > + *| BAR4 | | | | | | > > + *+-----------------+ | | MW1 | | | > > + *| BAR5 | | | | | | > > + *+-----------------+ +----->-----------------+ | | > > + * EP CONTROLLER 1 | | | | > > + * | | | | > > + * +----------------+ +-----------------+ > > + * (A) EP CONTROLLER 2 | | > > + * (OB SPACE) | | > > + * | MW1 | > > + * | | > > + * | | > > + * (B) +-----------------+ > > + * | | > > + * | | > > + * | | > > + * | | > > + * | | > > + * +-----------------+ > > + * PCI Address Space > > + * (Managed by HOST2) > > + * > > + * > > + * This function performs stage (B) in the above diagram (see Doorbell 1, > > + * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to > > + * doorbell to MSI address in PCI address space. > > + * > > + * This operation requires 3 parameters > > + * 1) Address reserved for doorbell in the outbound address space > > + * 2) MSI-X address in the PCIe Address space > > + * 3) Number of MSI-X interrupts that has to be configured > > + * > > + * The address in the outbound address space (for the Doorbell) is stored in > > + * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to > > + * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along > > + * with address for MW1. > > + * > > + * pci_epc_map_msi_irq() takes the MSI address from MSI capability register > > + * and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI > > + * address. > > + * > > + * epf_ntb_configure_msi() also stores the MSI data to raise each interrupt > > + * in db_data of the peer's control region. This helps the peer to raise > > + * doorbell of the other host by writing db_data to the BAR corresponding to > > + * BAR_DB_MW1. > > + */ > > +static int epf_ntb_configure_msi(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type, u16 db_count) > > +{ > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + u32 db_entry_size, db_data, db_offset; > > + struct pci_epf_bar *peer_epf_bar; > > + struct epf_ntb_ctrl *peer_ctrl; > > + enum pci_barno peer_barno; > > + phys_addr_t phys_addr; > > + struct pci_epc *epc; > > + u8 func_no; > > + int ret, i; > > + > > + ntb_epc = ntb->epc[type]; > > + epc = ntb_epc->epc; > > + > > + peer_ntb_epc = ntb->epc[!type]; > > + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; > > + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; > > + peer_ctrl = peer_ntb_epc->reg; > > + db_entry_size = peer_ctrl->db_entry_size; > > + > > + phys_addr = peer_epf_bar->phys_addr; > > + func_no = ntb_epc->func_no; > > + > > + ret = pci_epc_map_msi_irq(epc, func_no, phys_addr, db_count, > > + db_entry_size, &db_data, &db_offset); > > + if (ret) { > > + dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + > > + for (i = 0; i < db_count; i++) { > > + peer_ctrl->db_data[i] = db_data | i; > > + peer_ctrl->db_offset[i] = db_offset; > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_configure_msix() - Map OB address space to MSI-X address > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * @db_count: Number of doorbell interrupts to map > > + * > > + *+-----------------+ +----->+----------------+-----------+-----------------+ > > + *| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 | > > + *+-----------------+ | +----------------+ +-----------------+ > > + *| BAR1 | | | Doorbell 2 +---------+ | | > > + *+-----------------+----+ +----------------+ | | | > > + *| BAR2 | | Doorbell 3 +-------+ | +-----------------+ > > + *+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 | > > + *| BAR3 | | | Doorbell 4 +-----+ | +-----------------+ > > + *+-----------------+ | |----------------+ | | | | > > + *| BAR4 | | | | | | +-----------------+ > > + *+-----------------+ | | MW1 + | +-->+ MSI-X ADDRESS 3|| > > + *| BAR5 | | | | | +-----------------+ > > + *+-----------------+ +----->-----------------+ | | | > > + * EP CONTROLLER 1 | | | +-----------------+ > > + * | | +---->+ MSI-X ADDRESS 4 | > > + * +----------------+ +-----------------+ > > + * (A) EP CONTROLLER 2 | | > > + * (OB SPACE) | | > > + * | MW1 | > > + * | | > > + * | | > > + * (B) +-----------------+ > > + * | | > > + * | | > > + * | | > > + * | | > > + * | | > > + * +-----------------+ > > + * PCI Address Space > > + * (Managed by HOST2) > > + * > > + * This function performs stage (B) in the above diagram (see Doorbell 1, > > + * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to > > + * doorbell to MSI-X address in PCI address space. > > + * > > + * This operation requires 3 parameters > > + * 1) Address reserved for doorbell in the outbound address space > > + * 2) MSI-X address in the PCIe Address space > > + * 3) Number of MSI-X interrupts that has to be configured > > + * > > + * The address in the outbound address space (for the Doorbell) is stored in > > + * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to > > + * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along > > + * with address for MW1. > > + * > > + * The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and > > + * the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected > > + * to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the > > + * offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix() > > + * gets the MSI-X address and data. > > + * > > + * epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt > > + * in db_data of the peer's control region. This helps the peer to raise > > + * doorbell of the other host by writing db_data to the BAR corresponding to > > + * BAR_DB_MW1. > > + */ > > +static int epf_ntb_configure_msix(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type, > > + u16 db_count) > > +{ > > + const struct pci_epc_features *epc_features; > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + struct pci_epf_bar *peer_epf_bar, *epf_bar; > > + struct pci_epf_msix_tbl *msix_tbl; > > + struct epf_ntb_ctrl *peer_ctrl; > > + u32 db_entry_size, msg_data; > > + enum pci_barno peer_barno; > > + phys_addr_t phys_addr; > > + struct pci_epc *epc; > > + size_t align; > > + u64 msg_addr; > > + u8 func_no; > > + int ret, i; > > + > > + ntb_epc = ntb->epc[type]; > > + epc = ntb_epc->epc; > > + > > + epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar]; > > + msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset; > > + > > + peer_ntb_epc = ntb->epc[!type]; > > + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; > > + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; > > + phys_addr = peer_epf_bar->phys_addr; > > + peer_ctrl = peer_ntb_epc->reg; > > + epc_features = ntb_epc->epc_features; > > + align = epc_features->align; > > + > > + func_no = ntb_epc->func_no; > > + db_entry_size = peer_ctrl->db_entry_size; > > + > > + for (i = 0; i < db_count; i++) { > > + msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align); > > + msg_data = msix_tbl[i].msg_data; > > + ret = pci_epc_map_addr(epc, func_no, phys_addr, msg_addr, > > + db_entry_size); > > + if (ret) { > > + dev_err(&epc->dev, > > + "%s intf: Failed to configure MSI-X IRQ\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + phys_addr = phys_addr + db_entry_size; > > + peer_ctrl->db_data[i] = msg_data; > > + peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1); > > + } > > + ntb_epc->is_msix = true; > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_configure_db() - Configure the Outbound Address Space for one host > > + * to ring the doorbell of other host > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * @db_count: Count of the number of doorbells that has to be configured > > + * @msix: Indicates whether MSI-X or MSI should be used > > + * > > + * Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for > > + * one HOST to ring the doorbell of other HOST. > > + */ > > +static int epf_ntb_configure_db(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type, > > + u16 db_count, bool msix) > > +{ > > + struct epf_ntb_epc *ntb_epc; > > + struct pci_epc *epc; > > + int ret; > > + > > + if (db_count > MAX_DB_COUNT) > > + return -EINVAL; > > + > > + ntb_epc = ntb->epc[type]; > > + epc = ntb_epc->epc; > > + > > + if (msix) > > + ret = epf_ntb_configure_msix(ntb, type, db_count); > > + else > > + ret = epf_ntb_configure_msi(ntb, type, db_count); > > + > > + if (ret) > > + dev_err(&epc->dev, "%s intf: Failed to configure DB\n", > > + pci_epc_interface_string(type)); > > + > > + return ret; > > +} > > + > > +/** > > + * epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X > > + * address > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address. > > + */ > > +static void > > +epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type) > > +{ > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + struct pci_epf_bar *peer_epf_bar; > > + enum pci_barno peer_barno; > > + phys_addr_t phys_addr; > > + struct pci_epc *epc; > > + u8 func_no; > > + > > + ntb_epc = ntb->epc[type]; > > + epc = ntb_epc->epc; > > + > > + peer_ntb_epc = ntb->epc[!type]; > > + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; > > + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; > > + phys_addr = peer_epf_bar->phys_addr; > > + func_no = ntb_epc->func_no; > > + > > + pci_epc_unmap_addr(epc, func_no, phys_addr); > > +} > > + > > +/** > > + * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host > > + * @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY) > > + * > > + * Workqueue function that gets invoked for the two epf_ntb_epc > > + * periodically (once every 5ms) to see if it has received any commands > > + * from NTB host. The host can send commands to configure doorbell or > > + * configure memory window or to update link status. > > + */ > > +static void epf_ntb_cmd_handler(struct work_struct *work) > > +{ > > + enum pci_epc_interface_type type; > > + struct epf_ntb_epc *ntb_epc; > > + struct epf_ntb_ctrl *ctrl; > > + u32 command, argument; > > + struct epf_ntb *ntb; > > + struct device *dev; > > + u16 db_count; > > + bool is_msix; > > + int ret; > > + > > + ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work); > > + ctrl = ntb_epc->reg; > > + command = ctrl->command; > > + if (!command) > > + goto reset_handler; > > + argument = ctrl->argument; > > + > > + ctrl->command = 0; > > + ctrl->argument = 0; > > + > > + ctrl = ntb_epc->reg; > > + type = ntb_epc->type; > > + ntb = ntb_epc->epf_ntb; > > + dev = &ntb->epf->dev; > > + > > + switch (command) { > > + case COMMAND_CONFIGURE_DOORBELL: > > + db_count = argument & DB_COUNT_MASK; > > + is_msix = argument & MSIX_ENABLE; > > + ret = epf_ntb_configure_db(ntb, type, db_count, is_msix); > > + if (ret < 0) > > + ctrl->command_status = COMMAND_STATUS_ERROR; > > + else > > + ctrl->command_status = COMMAND_STATUS_OK; > > + break; > > + case COMMAND_TEARDOWN_DOORBELL: > > + epf_ntb_teardown_db(ntb, type); > > + ctrl->command_status = COMMAND_STATUS_OK; > > + break; > > + case COMMAND_CONFIGURE_MW: > > + ret = epf_ntb_configure_mw(ntb, type, argument); > > + if (ret < 0) > > + ctrl->command_status = COMMAND_STATUS_ERROR; > > + else > > + ctrl->command_status = COMMAND_STATUS_OK; > > + break; > > + case COMMAND_TEARDOWN_MW: > > + epf_ntb_teardown_mw(ntb, type, argument); > > + ctrl->command_status = COMMAND_STATUS_OK; > > + break; > > + case COMMAND_LINK_UP: > > + ntb_epc->linkup = true; > > + if (ntb->epc[PRIMARY_INTERFACE]->linkup && > > + ntb->epc[SECONDARY_INTERFACE]->linkup) { > > + ret = epf_ntb_link_up(ntb, true); > > + if (ret < 0) > > + ctrl->command_status = COMMAND_STATUS_ERROR; > > + else > > + ctrl->command_status = COMMAND_STATUS_OK; > > + goto reset_handler; > > + } > > + ctrl->command_status = COMMAND_STATUS_OK; > > + break; > > + case COMMAND_LINK_DOWN: > > + ntb_epc->linkup = false; > > + ret = epf_ntb_link_up(ntb, false); > > + if (ret < 0) > > + ctrl->command_status = COMMAND_STATUS_ERROR; > > + else > > + ctrl->command_status = COMMAND_STATUS_OK; > > + break; > > + default: > > + dev_err(dev, "%s intf UNKNOWN command: %d\n", > > + pci_epc_interface_string(type), command); > > + break; > > + } > > + > > +reset_handler: > > + queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler, > > + msecs_to_jiffies(5)); > > +} > > + > > +/** > > + * epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + *+-----------------+------->+------------------+ +-----------------+ > > + *| BAR0 | | CONFIG REGION | | BAR0 | > > + *+-----------------+----+ +------------------+<-------+-----------------+ > > + *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | > > + *+-----------------+ +-->+------------------+<-------+-----------------+ > > + *| BAR2 | Local Memory | BAR2 | > > + *+-----------------+ +-----------------+ > > + *| BAR3 | | BAR3 | > > + *+-----------------+ +-----------------+ > > + *| BAR4 | | BAR4 | > > + *+-----------------+ +-----------------+ > > + *| BAR5 | | BAR5 | > > + *+-----------------+ +-----------------+ > > + * EP CONTROLLER 1 EP CONTROLLER 2 > > + * > > + * Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad > > + * region. While BAR1 is the default peer scratchpad BAR, an NTB could have > > + * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). > > + * This function can get the exact BAR used for peer scratchpad from > > + * epf_ntb_bar[BAR_PEER_SPAD]. > > + * > > + * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function > > + * gets the address of peer scratchpad from > > + * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. > > + */ > > +static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc) > > +{ > > + struct pci_epf_bar *epf_bar; > > + enum pci_barno barno; > > + struct pci_epc *epc; > > + u8 func_no; > > + > > + epc = ntb_epc->epc; > > + func_no = ntb_epc->func_no; > > + barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + pci_epc_clear_bar(epc, func_no, epf_bar); > > +} > > + > > +/** > > + * epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + *+-----------------+------->+------------------+ +-----------------+ > > + *| BAR0 | | CONFIG REGION | | BAR0 | > > + *+-----------------+----+ +------------------+<-------+-----------------+ > > + *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | > > + *+-----------------+ +-->+------------------+<-------+-----------------+ > > + *| BAR2 | Local Memory | BAR2 | > > + *+-----------------+ +-----------------+ > > + *| BAR3 | | BAR3 | > > + *+-----------------+ +-----------------+ > > + *| BAR4 | | BAR4 | > > + *+-----------------+ +-----------------+ > > + *| BAR5 | | BAR5 | > > + *+-----------------+ +-----------------+ > > + * EP CONTROLLER 1 EP CONTROLLER 2 > > + * > > + * Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad > > + * region. While BAR1 is the default peer scratchpad BAR, an NTB could have > > + * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). > > + * This function can get the exact BAR used for peer scratchpad from > > + * epf_ntb_bar[BAR_PEER_SPAD]. > > + * > > + * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function > > + * gets the address of peer scratchpad from > > + * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. > > + */ > > +static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + struct pci_epf_bar *peer_epf_bar, *epf_bar; > > + enum pci_barno peer_barno, barno; > > + u32 peer_spad_offset; > > + struct pci_epc *epc; > > + struct device *dev; > > + u8 func_no; > > + int ret; > > + > > + dev = &ntb->epf->dev; > > + > > + peer_ntb_epc = ntb->epc[!type]; > > + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]; > > + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; > > + > > + ntb_epc = ntb->epc[type]; > > + barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + func_no = ntb_epc->func_no; > > + epc = ntb_epc->epc; > > + > > + peer_spad_offset = peer_ntb_epc->reg->spad_offset; > > + epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset; > > + epf_bar->size = peer_ntb_epc->spad_size; > > + epf_bar->barno = barno; > > + epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; > > + > > + ret = pci_epc_set_bar(epc, func_no, epf_bar); > > + if (ret) { > > + dev_err(dev, "%s intf: peer SPAD BAR set failed\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * +-----------------+------->+------------------+ +-----------------+ > > + * | BAR0 | | CONFIG REGION | | BAR0 | > > + * +-----------------+----+ +------------------+<-------+-----------------+ > > + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | > > + * +-----------------+ +-->+------------------+<-------+-----------------+ > > + * | BAR2 | Local Memory | BAR2 | > > + * +-----------------+ +-----------------+ > > + * | BAR3 | | BAR3 | > > + * +-----------------+ +-----------------+ > > + * | BAR4 | | BAR4 | > > + * +-----------------+ +-----------------+ > > + * | BAR5 | | BAR5 | > > + * +-----------------+ +-----------------+ > > + * EP CONTROLLER 1 EP CONTROLLER 2 > > + * > > + * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and > > + * self scratchpad region (removes inbound ATU configuration). While BAR0 is > > + * the default self scratchpad BAR, an NTB could have other BARs for self > > + * scratchpad (because of reserved BARs). This function can get the exact BAR > > + * used for self scratchpad from epf_ntb_bar[BAR_CONFIG]. > > + * > > + * Please note the self scratchpad region and config region is combined to > > + * a single region and mapped using the same BAR. Also note HOST2's peer > > + * scratchpad is HOST1's self scratchpad. > > + */ > > +static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc) > > +{ > > + struct pci_epf_bar *epf_bar; > > + enum pci_barno barno; > > + struct pci_epc *epc; > > + u8 func_no; > > + > > + epc = ntb_epc->epc; > > + func_no = ntb_epc->func_no; > > + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + pci_epc_clear_bar(epc, func_no, epf_bar); > > +} > > + > > +/** > > + * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * +-----------------+------->+------------------+ +-----------------+ > > + * | BAR0 | | CONFIG REGION | | BAR0 | > > + * +-----------------+----+ +------------------+<-------+-----------------+ > > + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | > > + * +-----------------+ +-->+------------------+<-------+-----------------+ > > + * | BAR2 | Local Memory | BAR2 | > > + * +-----------------+ +-----------------+ > > + * | BAR3 | | BAR3 | > > + * +-----------------+ +-----------------+ > > + * | BAR4 | | BAR4 | > > + * +-----------------+ +-----------------+ > > + * | BAR5 | | BAR5 | > > + * +-----------------+ +-----------------+ > > + * EP CONTROLLER 1 EP CONTROLLER 2 > > + * > > + * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and > > + * self scratchpad region. While BAR0 is the default self scratchpad BAR, an > > + * NTB could have other BARs for self scratchpad (because of reserved BARs). > > + * This function can get the exact BAR used for self scratchpad from > > + * epf_ntb_bar[BAR_CONFIG]. > > + * > > + * Please note the self scratchpad region and config region is combined to > > + * a single region and mapped using the same BAR. Also note HOST2's peer > > + * scratchpad is HOST1's self scratchpad. > > + */ > > +static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc) > > +{ > > + struct pci_epf_bar *epf_bar; > > + enum pci_barno barno; > > + struct epf_ntb *ntb; > > + struct pci_epc *epc; > > + struct device *dev; > > + u8 func_no; > > + int ret; > > + > > + ntb = ntb_epc->epf_ntb; > > + dev = &ntb->epf->dev; > > + > > + epc = ntb_epc->epc; > > + func_no = ntb_epc->func_no; > > + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + > > + ret = pci_epc_set_bar(epc, func_no, epf_bar); > > + if (ret) { > > + dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n", > > + pci_epc_interface_string(ntb_epc->type)); > > + return ret; > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_config_spad_bar_free() - Free the physical memory associated with > > + * config + scratchpad region > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * +-----------------+------->+------------------+ +-----------------+ > > + * | BAR0 | | CONFIG REGION | | BAR0 | > > + * +-----------------+----+ +------------------+<-------+-----------------+ > > + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | > > + * +-----------------+ +-->+------------------+<-------+-----------------+ > > + * | BAR2 | Local Memory | BAR2 | > > + * +-----------------+ +-----------------+ > > + * | BAR3 | | BAR3 | > > + * +-----------------+ +-----------------+ > > + * | BAR4 | | BAR4 | > > + * +-----------------+ +-----------------+ > > + * | BAR5 | | BAR5 | > > + * +-----------------+ +-----------------+ > > + * EP CONTROLLER 1 EP CONTROLLER 2 > > + * > > + * Free the Local Memory mentioned in the above diagram. After invoking this > > + * function, any of config + self scratchpad region of HOST1 or peer scratchpad > > + * region of HOST2 should not be accessed. > > + */ > > +static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb) > > +{ > > + enum pci_epc_interface_type type; > > + struct epf_ntb_epc *ntb_epc; > > + enum pci_barno barno; > > + struct pci_epf *epf; > > + > > + epf = ntb->epf; > > + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { > > + ntb_epc = ntb->epc[type]; > > + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; > > + if (ntb_epc->reg) > > + pci_epf_free_space(epf, ntb_epc->reg, barno, type); > > + } > > +} > > + > > +/** > > + * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad > > + * region > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * +-----------------+------->+------------------+ +-----------------+ > > + * | BAR0 | | CONFIG REGION | | BAR0 | > > + * +-----------------+----+ +------------------+<-------+-----------------+ > > + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | > > + * +-----------------+ +-->+------------------+<-------+-----------------+ > > + * | BAR2 | Local Memory | BAR2 | > > + * +-----------------+ +-----------------+ > > + * | BAR3 | | BAR3 | > > + * +-----------------+ +-----------------+ > > + * | BAR4 | | BAR4 | > > + * +-----------------+ +-----------------+ > > + * | BAR5 | | BAR5 | > > + * +-----------------+ +-----------------+ > > + * EP CONTROLLER 1 EP CONTROLLER 2 > > + * > > + * Allocate the Local Memory mentioned in the above diagram. The size of > > + * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION > > + * is obtained from "spad-count" configfs entry. > > + * > > + * The size of both config region and scratchpad region has to be aligned, > > + * since the scratchpad region will also be mapped as PEER SCRATCHPAD of > > + * other host using a separate BAR. > > + */ > > +static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + const struct pci_epc_features *peer_epc_features, *epc_features; > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + size_t msix_table_size, pba_size, align; > > + enum pci_barno peer_barno, barno; > > + struct epf_ntb_ctrl *ctrl; > > + u32 spad_size, ctrl_size; > > + u64 size, peer_size; > > + struct pci_epf *epf; > > + struct device *dev; > > + bool msix_capable; > > + u32 spad_count; > > + void *base; > > + > > + epf = ntb->epf; > > + dev = &epf->dev; > > + ntb_epc = ntb->epc[type]; > > + > > + epc_features = ntb_epc->epc_features; > > + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; > > + size = epc_features->bar_fixed_size[barno]; > > + align = epc_features->align; > > + > > + peer_ntb_epc = ntb->epc[!type]; > > + peer_epc_features = peer_ntb_epc->epc_features; > > + peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; > > + peer_size = peer_epc_features->bar_fixed_size[peer_barno]; > > + > > + /* Check if epc_features is populated incorrectly */ > > + if ((!IS_ALIGNED(size, align))) > > + return -EINVAL; > > + > > + spad_count = ntb->spad_count; > > + > > + ctrl_size = sizeof(struct epf_ntb_ctrl); > > + spad_size = spad_count * 4; > > + > > + msix_capable = epc_features->msix_capable; > > + if (msix_capable) { > > + msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count; > > + ctrl_size = ALIGN(ctrl_size, 8); > > + ntb_epc->msix_table_offset = ctrl_size; > > + ntb_epc->msix_bar = barno; > > + /* Align to QWORD or 8 Bytes */ > > + pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8); > > + ctrl_size = ctrl_size + msix_table_size + pba_size; > > + } > > + > > + if (!align) { > > + ctrl_size = roundup_pow_of_two(ctrl_size); > > + spad_size = roundup_pow_of_two(spad_size); > > + } else { > > + ctrl_size = ALIGN(ctrl_size, align); > > + spad_size = ALIGN(spad_size, align); > > + } > > + > > + if (peer_size) { > > + if (peer_size < spad_size) > > + spad_count = peer_size / 4; > > + spad_size = peer_size; > > + } > > + > > + /* > > + * In order to make sure SPAD offset is aligned to its size, > > + * expand control region size to the size of SPAD if SPAD size > > + * is greater than control region size. > > + */ > > + if (spad_size > ctrl_size) > > + ctrl_size = spad_size; > > + > > + if (!size) > > + size = ctrl_size + spad_size; > > + else if (size < ctrl_size + spad_size) > > + return -EINVAL; > > + > > + base = pci_epf_alloc_space(epf, size, barno, align, type); > > + if (!base) { > > + dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n", > > + pci_epc_interface_string(type)); > > + return -ENOMEM; > > + } > > + > > + ntb_epc->reg = base; > > + > > + ctrl = ntb_epc->reg; > > + ctrl->spad_offset = ctrl_size; > > + ctrl->spad_count = spad_count; > > + ctrl->num_mws = ntb->num_mws; > > + ctrl->db_entry_size = align ? align : 4; > > + ntb_epc->spad_size = spad_size; > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config + > > + * scratchpad region for each of PRIMARY and SECONDARY interface > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for > > + * config + scratchpad region for a specific interface > > + */ > > +static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb) > > +{ > > + enum pci_epc_interface_type type; > > + struct device *dev; > > + int ret; > > + > > + dev = &ntb->epf->dev; > > + > > + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { > > + ret = epf_ntb_config_spad_bar_alloc(ntb, type); > > + if (ret) { > > + dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address > > + * space > > + * @ntb_epc: EPC associated with one of the HOST which holds peers outbound > > + * address regions > > + * > > + * +-----------------+ +---->+----------------+-----------+-----------------+ > > + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | > > + * +-----------------+ | +----------------+ +-----------------+ > > + * | BAR1 | | | Doorbell 2 +---------+ | | > > + * +-----------------+----+ +----------------+ | | | > > + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ > > + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | > > + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ > > + * +-----------------+ | |----------------+ | | | | > > + * | BAR4 | | | | | | +-----------------+ > > + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| > > + * | BAR5 | | | | | | +-----------------+ > > + * +-----------------+ +---->-----------------+ | | | | > > + * EP CONTROLLER 1 | | | | +-----------------+ > > + * | | | +---->+ MSI|X ADDRESS 4 | > > + * +----------------+ | +-----------------+ > > + * (A) EP CONTROLLER 2 | | | > > + * (OB SPACE) | | | > > + * +-------> MW1 | > > + * | | > > + * | | > > + * (B) +-----------------+ > > + * | | > > + * | | > > + * | | > > + * | | > > + * | | > > + * +-----------------+ > > + * PCI Address Space > > + * (Managed by HOST2) > > + * > > + * Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram. > > + * It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, > > + * MW4). > > + */ > > +static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc) > > +{ > > + struct pci_epf_bar *epf_bar; > > + void __iomem *mw_addr; > > + phys_addr_t phys_addr; > > + enum epf_ntb_bar bar; > > + enum pci_barno barno; > > + struct pci_epc *epc; > > + size_t size; > > + > > + epc = ntb_epc->epc; > > + > > + for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { > > + barno = ntb_epc->epf_ntb_bar[bar]; > > + mw_addr = ntb_epc->mw_addr[barno]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + phys_addr = epf_bar->phys_addr; > > + size = epf_bar->size; > > + if (mw_addr) { > > + pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size); > > + ntb_epc->mw_addr[barno] = NULL; > > + } > > + } > > +} > > + > > +/** > > + * epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR > > + * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound > > + * address > > + * > > + * +-----------------+ +---->+----------------+-----------+-----------------+ > > + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | > > + * +-----------------+ | +----------------+ +-----------------+ > > + * | BAR1 | | | Doorbell 2 +---------+ | | > > + * +-----------------+----+ +----------------+ | | | > > + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ > > + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | > > + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ > > + * +-----------------+ | |----------------+ | | | | > > + * | BAR4 | | | | | | +-----------------+ > > + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| > > + * | BAR5 | | | | | | +-----------------+ > > + * +-----------------+ +---->-----------------+ | | | | > > + * EP CONTROLLER 1 | | | | +-----------------+ > > + * | | | +---->+ MSI|X ADDRESS 4 | > > + * +----------------+ | +-----------------+ > > + * (A) EP CONTROLLER 2 | | | > > + * (OB SPACE) | | | > > + * +-------> MW1 | > > + * | | > > + * | | > > + * (B) +-----------------+ > > + * | | > > + * | | > > + * | | > > + * | | > > + * | | > > + * +-----------------+ > > + * PCI Address Space > > + * (Managed by HOST2) > > + * > > + * Clear doorbell and memory BARs (remove inbound ATU configuration). In the above > > + * diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2 > > + * BAR, MW3 BAR and MW4 BAR). > > + */ > > +static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc) > > +{ > > + struct pci_epf_bar *epf_bar; > > + enum epf_ntb_bar bar; > > + enum pci_barno barno; > > + struct pci_epc *epc; > > + u8 func_no; > > + > > + epc = ntb_epc->epc; > > + > > + func_no = ntb_epc->func_no; > > + > > + for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { > > + barno = ntb_epc->epf_ntb_bar[bar]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + pci_epc_clear_bar(epc, func_no, epf_bar); > > + } > > +} > > + > > +/** > > + * epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory > > + * allocated in peers outbound address space > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and > > + * epf_ntb_free_peer_mem() which frees up HOST2 outbound memory. > > + */ > > +static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + > > + ntb_epc = ntb->epc[type]; > > + peer_ntb_epc = ntb->epc[!type]; > > + > > + epf_ntb_db_mw_bar_clear(ntb_epc); > > + epf_ntb_free_peer_mem(peer_ntb_epc); > > +} > > + > > +/** > > + * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Configure MSI/MSI-X capability for each interface with number of > > + * interrupts equal to "db_count" configfs entry. > > + */ > > +static int epf_ntb_configure_interrupt(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + const struct pci_epc_features *epc_features; > > + bool msix_capable, msi_capable; > > + struct epf_ntb_epc *ntb_epc; > > + struct pci_epc *epc; > > + struct device *dev; > > + u32 db_count; > > + u8 func_no; > > + int ret; > > + > > + ntb_epc = ntb->epc[type]; > > + dev = &ntb->epf->dev; > > + > > + epc_features = ntb_epc->epc_features; > > + msix_capable = epc_features->msix_capable; > > + msi_capable = epc_features->msi_capable; > > + > > + if (!(msix_capable || msi_capable)) { > > + dev_err(dev, "MSI or MSI-X is required for doorbell\n"); > > + return -EINVAL; > > + } > > + > > + func_no = ntb_epc->func_no; > > + > > + db_count = ntb->db_count; > > + if (db_count > MAX_DB_COUNT) { > > + dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT); > > + return -EINVAL; > > + } > > + > > + ntb->db_count = db_count; > > + epc = ntb_epc->epc; > > + > > + if (msi_capable) { > > + ret = pci_epc_set_msi(epc, func_no, db_count); > > + if (ret) { > > + dev_err(dev, "%s intf: MSI configuration failed\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + } > > + > > + if (msix_capable) { > > + ret = pci_epc_set_msix(epc, func_no, db_count, > > + ntb_epc->msix_bar, > > + ntb_epc->msix_table_offset); > > + if (ret) { > > + dev_err(dev, "MSI configuration failed\n"); > > + return ret; > > + } > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space > > + * @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound > > + * address > > + * @bar: BAR of @ntb_epc in for which memory has to be allocated (could be > > + * BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4) > > + * @peer_ntb_epc: EPC associated with HOST whose outbound address space is > > + * used by @ntb_epc > > + * @size: Size of the address region that has to be allocated in peers OB SPACE > > + * > > + * > > + * +-----------------+ +---->+----------------+-----------+-----------------+ > > + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | > > + * +-----------------+ | +----------------+ +-----------------+ > > + * | BAR1 | | | Doorbell 2 +---------+ | | > > + * +-----------------+----+ +----------------+ | | | > > + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ > > + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | > > + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ > > + * +-----------------+ | |----------------+ | | | | > > + * | BAR4 | | | | | | +-----------------+ > > + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| > > + * | BAR5 | | | | | | +-----------------+ > > + * +-----------------+ +---->-----------------+ | | | | > > + * EP CONTROLLER 1 | | | | +-----------------+ > > + * | | | +---->+ MSI|X ADDRESS 4 | > > + * +----------------+ | +-----------------+ > > + * (A) EP CONTROLLER 2 | | | > > + * (OB SPACE) | | | > > + * +-------> MW1 | > > + * | | > > + * | | > > + * (B) +-----------------+ > > + * | | > > + * | | > > + * | | > > + * | | > > + * | | > > + * +-----------------+ > > + * PCI Address Space > > + * (Managed by HOST2) > > + * > > + * Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate > > + * for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4). > > + */ > > +static int epf_ntb_alloc_peer_mem(struct device *dev, > > + struct epf_ntb_epc *ntb_epc, > > + enum epf_ntb_bar bar, > > + struct epf_ntb_epc *peer_ntb_epc, > > + size_t size) > > +{ > > + const struct pci_epc_features *epc_features; > > + struct pci_epf_bar *epf_bar; > > + struct pci_epc *peer_epc; > > + phys_addr_t phys_addr; > > + void __iomem *mw_addr; > > + enum pci_barno barno; > > + size_t align; > > + > > + epc_features = ntb_epc->epc_features; > > + align = epc_features->align; > > + > > + if (size < 128) > > + size = 128; > > + > > + if (align) > > + size = ALIGN(size, align); > > + else > > + size = roundup_pow_of_two(size); > > + > > + peer_epc = peer_ntb_epc->epc; > > + mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size); > > + if (!mw_addr) { > > + dev_err(dev, "%s intf: Failed to allocate OB address\n", > > + pci_epc_interface_string(peer_ntb_epc->type)); > > + return -ENOMEM; > > + } > > + > > + barno = ntb_epc->epf_ntb_bar[bar]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + ntb_epc->mw_addr[barno] = mw_addr; > > + > > + epf_bar->phys_addr = phys_addr; > > + epf_bar->size = size; > > + epf_bar->barno = barno; > > + epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates > > + * memory in OB address space of HOST2 and configures BAR of HOST1 > > + */ > > +static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + const struct pci_epc_features *epc_features; > > + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; > > + struct pci_epf_bar *epf_bar; > > + struct epf_ntb_ctrl *ctrl; > > + u32 num_mws, db_count; > > + enum epf_ntb_bar bar; > > + enum pci_barno barno; > > + struct pci_epc *epc; > > + struct device *dev; > > + size_t align; > > + int ret, i; > > + u8 func_no; > > + u64 size; > > + > > + ntb_epc = ntb->epc[type]; > > + peer_ntb_epc = ntb->epc[!type]; > > + > > + dev = &ntb->epf->dev; > > + epc_features = ntb_epc->epc_features; > > + align = epc_features->align; > > + func_no = ntb_epc->func_no; > > + epc = ntb_epc->epc; > > + num_mws = ntb->num_mws; > > + db_count = ntb->db_count; > > + > > + for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) { > > + if (bar == BAR_DB_MW1) { > > + align = align ? align : 4; > > + size = db_count * align; > > + size = ALIGN(size, ntb->mws_size[i]); > > + ctrl = ntb_epc->reg; > > + ctrl->mw1_offset = size; > > + size += ntb->mws_size[i]; > > + } else { > > + size = ntb->mws_size[i]; > > + } > > + > > + ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar, > > + peer_ntb_epc, size); > > + if (ret) { > > + dev_err(dev, "%s intf: DoorBell mem alloc failed\n", > > + pci_epc_interface_string(type)); > > + goto err_alloc_peer_mem; > > + } > > + > > + barno = ntb_epc->epf_ntb_bar[bar]; > > + epf_bar = &ntb_epc->epf_bar[barno]; > > + > > + ret = pci_epc_set_bar(epc, func_no, epf_bar); > > + if (ret) { > > + dev_err(dev, "%s intf: DoorBell BAR set failed\n", > > + pci_epc_interface_string(type)); > > + goto err_alloc_peer_mem; > > + } > > + } > > + > > + return 0; > > + > > +err_alloc_peer_mem: > > + epf_ntb_db_mw_bar_cleanup(ntb, type); > > + > > + return ret; > > +} > > + > > +/** > > + * epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Unbind NTB function device from EPC and relinquish reference to pci_epc > > + * for each of the interface. > > + */ > > +static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + struct epf_ntb_epc *ntb_epc; > > + struct pci_epc *epc; > > + struct pci_epf *epf; > > + > > + if (type < 0) > > + return; > > + > > + epf = ntb->epf; > > + ntb_epc = ntb->epc[type]; > > + if (!ntb_epc) > > + return; > > + epc = ntb_epc->epc; > > + pci_epc_remove_epf(epc, epf, type); > > + pci_epc_put(epc); > > +} > > + > > +/** > > + * epf_ntb_epc_destroy() - Cleanup NTB EPC interface > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces > > + */ > > +static void epf_ntb_epc_destroy(struct epf_ntb *ntb) > > +{ > > + enum pci_epc_interface_type type; > > + > > + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) > > + epf_ntb_epc_destroy_interface(ntb, type); > > +} > > + > > +/** > > + * epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @epc: struct pci_epc to which a particular NTB interface should be associated > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Allocate memory for NTB EPC interface and initialize it. > > + */ > > +static int epf_ntb_epc_create_interface(struct epf_ntb *ntb, > > + struct pci_epc *epc, > > + enum pci_epc_interface_type type) > > +{ > > + const struct pci_epc_features *epc_features; > > + struct pci_epf_bar *epf_bar; > > + struct epf_ntb_epc *ntb_epc; > > + struct pci_epf *epf; > > + struct device *dev; > > + u8 func_no; > > + > > + dev = &ntb->epf->dev; > > + > > + ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL); > > + if (!ntb_epc) > > + return -ENOMEM; > > + > > + epf = ntb->epf; > > + if (type == PRIMARY_INTERFACE) { > > + func_no = epf->func_no; > > + epf_bar = epf->bar; > > + } else { > > + func_no = epf->sec_epc_func_no; > > + epf_bar = epf->sec_epc_bar; > > + } > > + > > + ntb_epc->linkup = false; > > + ntb_epc->epc = epc; > > + ntb_epc->func_no = func_no; > > + ntb_epc->type = type; > > + ntb_epc->epf_bar = epf_bar; > > + ntb_epc->epf_ntb = ntb; > > + > > + epc_features = pci_epc_get_features(epc, func_no); > > + if (!epc_features) > > + return -EINVAL; > > + ntb_epc->epc_features = epc_features; > > + > > + ntb->epc[type] = ntb_epc; > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_epc_create() - Create and initialize NTB EPC interface > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * Get a reference to EPC device and bind NTB function device to that EPC > > + * for each of the interface. It is also a wrapper to > > + * epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface > > + * and initialize it > > + */ > > +static int epf_ntb_epc_create(struct epf_ntb *ntb) > > +{ > > + struct pci_epf *epf; > > + struct device *dev; > > + int ret; > > + > > + epf = ntb->epf; > > + dev = &epf->dev; > > + > > + ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE); > > + if (ret) { > > + dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n"); > > + return ret; > > + } > > + > > + ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc, > > + SECONDARY_INTERFACE); > > + if (ret) { > > + dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n"); > > + goto err_epc_create; > > + } > > + > > + return 0; > > + > > +err_epc_create: > > + epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE); > > + > > + return ret; > > +} > > + > > +/** > > + * epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of > > + * the NTB constructs (scratchpad region, doorbell, memorywindow) > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD, > > + * BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4. > > + */ > > +static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + const struct pci_epc_features *epc_features; > > + struct epf_ntb_epc *ntb_epc; > > + enum pci_barno barno; > > + enum epf_ntb_bar bar; > > + struct device *dev; > > + u32 num_mws; > > + int i; > > + > > + barno = BAR_0; > > + ntb_epc = ntb->epc[type]; > > + num_mws = ntb->num_mws; > > + dev = &ntb->epf->dev; > > + epc_features = ntb_epc->epc_features; > > + > > + /* These are required BARs which are mandatory for NTB functionality */ > > + for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) { > > + barno = pci_epc_get_next_free_bar(epc_features, barno); > > + if (barno < 0) { > > + dev_err(dev, "%s intf: Fail to get NTB function BAR\n", > > + pci_epc_interface_string(type)); > > + return barno; > > + } > > + ntb_epc->epf_ntb_bar[bar] = barno; > > + } > > + > > + /* These are optional BARs which don't impact NTB functionality */ > > + for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) { > > + barno = pci_epc_get_next_free_bar(epc_features, barno); > > + if (barno < 0) { > > + ntb->num_mws = i; > > + dev_dbg(dev, "BAR not available for > MW%d\n", i + 1); > > + } > > + ntb_epc->epf_ntb_bar[bar] = barno; > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB > > + * constructs (scratchpad region, doorbell, memorywindow) > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs > > + * to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2, > > + * BAR_MW3 and BAR_MW4 for all the interfaces. > > + */ > > +static int epf_ntb_init_epc_bar(struct epf_ntb *ntb) > > +{ > > + enum pci_epc_interface_type type; > > + struct device *dev; > > + int ret; > > + > > + dev = &ntb->epf->dev; > > + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { > > + ret = epf_ntb_init_epc_bar_interface(ntb, type); > > + if (ret) { > > + dev_err(dev, "Fail to init EPC bar for %s interface\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * epf_ntb_epc_init_interface() - Initialize NTB interface > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Wrapper to initialize a particular EPC interface and start the workqueue > > + * to check for commands from host. This function will write to the > > + * EP controller HW for configuring it. > > + */ > > +static int epf_ntb_epc_init_interface(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + struct epf_ntb_epc *ntb_epc; > > + struct pci_epc *epc; > > + struct pci_epf *epf; > > + struct device *dev; > > + u8 func_no; > > + int ret; > > + > > + ntb_epc = ntb->epc[type]; > > + epf = ntb->epf; > > + dev = &epf->dev; > > + epc = ntb_epc->epc; > > + func_no = ntb_epc->func_no; > > + > > + ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]); > > + if (ret) { > > + dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n", > > + pci_epc_interface_string(type)); > > + return ret; > > + } > > + > > + ret = epf_ntb_peer_spad_bar_set(ntb, type); > > + if (ret) { > > + dev_err(dev, "%s intf: Peer SPAD BAR init failed\n", > > + pci_epc_interface_string(type)); > > + goto err_peer_spad_bar_init; > > + } > > + > > + ret = epf_ntb_configure_interrupt(ntb, type); > > + if (ret) { > > + dev_err(dev, "%s intf: Interrupt configuration failed\n", > > + pci_epc_interface_string(type)); > > + goto err_peer_spad_bar_init; > > + } > > + > > + ret = epf_ntb_db_mw_bar_init(ntb, type); > > + if (ret) { > > + dev_err(dev, "%s intf: DB/MW BAR init failed\n", > > + pci_epc_interface_string(type)); > > + goto err_db_mw_bar_init; > > + } > > + > > + ret = pci_epc_write_header(epc, func_no, epf->header); > > + if (ret) { > > + dev_err(dev, "%s intf: Configuration header write failed\n", > > + pci_epc_interface_string(type)); > > + goto err_write_header; > > + } > > + > > + INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler); > > + queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work); > > + > > + return 0; > > + > > +err_write_header: > > + epf_ntb_db_mw_bar_cleanup(ntb, type); > > + > > +err_db_mw_bar_init: > > + epf_ntb_peer_spad_bar_clear(ntb->epc[type]); > > + > > +err_peer_spad_bar_init: > > + epf_ntb_config_sspad_bar_clear(ntb->epc[type]); > > + > > + return ret; > > +} > > + > > +/** > > + * epf_ntb_epc_cleanup_interface() - Cleanup NTB interface > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * @type: PRIMARY interface or SECONDARY interface > > + * > > + * Wrapper to cleanup a particular NTB interface. > > + */ > > +static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb, > > + enum pci_epc_interface_type type) > > +{ > > + struct epf_ntb_epc *ntb_epc; > > + > > + if (type < 0) > > + return; > > + > > + ntb_epc = ntb->epc[type]; > > + cancel_delayed_work(&ntb_epc->cmd_handler); > > + epf_ntb_db_mw_bar_cleanup(ntb, type); > > + epf_ntb_peer_spad_bar_clear(ntb_epc); > > + epf_ntb_config_sspad_bar_clear(ntb_epc); > > +} > > + > > +/** > > + * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * Wrapper to cleanup all NTB interfaces. > > + */ > > +static void epf_ntb_epc_cleanup(struct epf_ntb *ntb) > > +{ > > + enum pci_epc_interface_type type; > > + > > + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) > > + epf_ntb_epc_cleanup_interface(ntb, type); > > +} > > + > > +/** > > + * epf_ntb_epc_init() - Initialize all NTB interfaces > > + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 > > + * > > + * Wrapper to initialize all NTB interface and start the workqueue > > + * to check for commands from host. > > + */ > > +static int epf_ntb_epc_init(struct epf_ntb *ntb) > > +{ > > + enum pci_epc_interface_type type; > > + struct device *dev; > > + int ret; > > + > > + dev = &ntb->epf->dev; > > + > > + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { > > + ret = epf_ntb_epc_init_interface(ntb, type); > > + if (ret) { > > + dev_err(dev, "%s intf: Failed to initialize\n", > > + pci_epc_interface_string(type)); > > + goto err_init_type; > > + } > > + } > > + > > + return 0; > > + > > +err_init_type: > > + epf_ntb_epc_cleanup_interface(ntb, type - 1); > > + > > + return ret; > > +} > > + > > +/** > > + * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality > > + * @epf: NTB endpoint function device > > + * > > + * Initialize both the endpoint controllers associated with NTB function device. > > + * Invoked when a primary interface or secondary interface is bound to EPC > > + * device. This function will succeed only when EPC is bound to both the > > + * interfaces. > > + */ > > +static int epf_ntb_bind(struct pci_epf *epf) > > +{ > > + struct epf_ntb *ntb = epf_get_drvdata(epf); > > + struct device *dev = &epf->dev; > > + int ret; > > + > > + if (!epf->epc) { > > + dev_dbg(dev, "PRIMARY EPC interface not yet bound\n"); > > + return 0; > > + } > > + > > + if (!epf->sec_epc) { > > + dev_dbg(dev, "SECONDARY EPC interface not yet bound\n"); > > + return 0; > > + } > > + > > + ret = epf_ntb_epc_create(ntb); > > + if (ret) { > > + dev_err(dev, "Failed to create NTB EPC\n"); > > + return ret; > > + } > > + > > + ret = epf_ntb_init_epc_bar(ntb); > > + if (ret) { > > + dev_err(dev, "Failed to create NTB EPC\n"); > > + goto err_bar_init; > > + } > > + > > + ret = epf_ntb_config_spad_bar_alloc_interface(ntb); > > + if (ret) { > > + dev_err(dev, "Failed to allocate BAR memory\n"); > > + goto err_bar_alloc; > > + } > > + > > + ret = epf_ntb_epc_init(ntb); > > + if (ret) { > > + dev_err(dev, "Failed to initialize EPC\n"); > > + goto err_bar_alloc; > > + } > > + > > + epf_set_drvdata(epf, ntb); > > + > > + return 0; > > + > > +err_bar_alloc: > > + epf_ntb_config_spad_bar_free(ntb); > > + > > +err_bar_init: > > + epf_ntb_epc_destroy(ntb); > > + > > + return ret; > > +} > > + > > +/** > > + * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind() > > + * @epf: NTB endpoint function device > > + * > > + * Cleanup the initialization from epf_ntb_bind() > > + */ > > +static void epf_ntb_unbind(struct pci_epf *epf) > > +{ > > + struct epf_ntb *ntb = epf_get_drvdata(epf); > > + > > + epf_ntb_epc_cleanup(ntb); > > + epf_ntb_config_spad_bar_free(ntb); > > + epf_ntb_epc_destroy(ntb); > > +} > > + > > +#define EPF_NTB_R(_name) \ > > +static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ > > + char *page) \ > > +{ \ > > + struct config_group *group = to_config_group(item); \ > > + struct epf_ntb *ntb = to_epf_ntb(group); \ > > + \ > > + return sprintf(page, "%d\n", ntb->_name); \ > > +} > > + > > +#define EPF_NTB_W(_name) \ > > +static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ > > + const char *page, size_t len) \ > > +{ \ > > + struct config_group *group = to_config_group(item); \ > > + struct epf_ntb *ntb = to_epf_ntb(group); \ > > + u32 val; \ > > + int ret; \ > > + \ > > + ret = kstrtou32(page, 0, &val); \ > > + if (ret) \ > > + return ret; \ > > + \ > > + ntb->_name = val; \ > > + \ > > + return len; \ > > +} > > + > > +#define EPF_NTB_MW_R(_name) \ > > +static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ > > + char *page) \ > > +{ \ > > + struct config_group *group = to_config_group(item); \ > > + struct epf_ntb *ntb = to_epf_ntb(group); \ > > + int win_no; \ > > + \ > > + sscanf(#_name, "mw%d", &win_no); \ > > + \ > > + return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]); \ > > +} > > + > > +#define EPF_NTB_MW_W(_name) \ > > +static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ > > + const char *page, size_t len) \ > > +{ \ > > + struct config_group *group = to_config_group(item); \ > > + struct epf_ntb *ntb = to_epf_ntb(group); \ > > + struct device *dev = &ntb->epf->dev; \ > > + int win_no; \ > > + u64 val; \ > > + int ret; \ > > + \ > > + ret = kstrtou64(page, 0, &val); \ > > + if (ret) \ > > + return ret; \ > > + \ > > + if (sscanf(#_name, "mw%d", &win_no) != 1) \ > > + return -EINVAL; \ > > + \ > > + if (ntb->num_mws < win_no) { \ > > + dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \ > > + return -EINVAL; \ > > + } \ > > + \ > > + ntb->mws_size[win_no - 1] = val; \ > > + \ > > + return len; \ > > +} > > + > > +static ssize_t epf_ntb_num_mws_store(struct config_item *item, > > + const char *page, size_t len) > > +{ > > + struct config_group *group = to_config_group(item); > > + struct epf_ntb *ntb = to_epf_ntb(group); > > + u32 val; > > + int ret; > > + > > + ret = kstrtou32(page, 0, &val); > > + if (ret) > > + return ret; > > + > > + if (val > MAX_MW) > > + return -EINVAL; > > + > > + ntb->num_mws = val; > > + > > + return len; > > +} > > + > > +EPF_NTB_R(spad_count) > > +EPF_NTB_W(spad_count) > > +EPF_NTB_R(db_count) > > +EPF_NTB_W(db_count) > > +EPF_NTB_R(num_mws) > > +EPF_NTB_MW_R(mw1) > > +EPF_NTB_MW_W(mw1) > > +EPF_NTB_MW_R(mw2) > > +EPF_NTB_MW_W(mw2) > > +EPF_NTB_MW_R(mw3) > > +EPF_NTB_MW_W(mw3) > > +EPF_NTB_MW_R(mw4) > > +EPF_NTB_MW_W(mw4) > > + > > +CONFIGFS_ATTR(epf_ntb_, spad_count); > > +CONFIGFS_ATTR(epf_ntb_, db_count); > > +CONFIGFS_ATTR(epf_ntb_, num_mws); > > +CONFIGFS_ATTR(epf_ntb_, mw1); > > +CONFIGFS_ATTR(epf_ntb_, mw2); > > +CONFIGFS_ATTR(epf_ntb_, mw3); > > +CONFIGFS_ATTR(epf_ntb_, mw4); > > + > > +static struct configfs_attribute *epf_ntb_attrs[] = { > > + &epf_ntb_attr_spad_count, > > + &epf_ntb_attr_db_count, > > + &epf_ntb_attr_num_mws, > > + &epf_ntb_attr_mw1, > > + &epf_ntb_attr_mw2, > > + &epf_ntb_attr_mw3, > > + &epf_ntb_attr_mw4, > > + NULL, > > +}; > > + > > +static const struct config_item_type ntb_group_type = { > > + .ct_attrs = epf_ntb_attrs, > > + .ct_owner = THIS_MODULE, > > +}; > > + > > +/** > > + * epf_ntb_add_cfs() - Add configfs directory specific to NTB > > + * @epf: NTB endpoint function device > > + * > > + * Add configfs directory specific to NTB. This directory will hold > > + * NTB specific properties like db_count, spad_count, num_mws etc., > > + */ > > +static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf, > > + struct config_group *group) > > +{ > > + struct epf_ntb *ntb = epf_get_drvdata(epf); > > + struct config_group *ntb_group = &ntb->group; > > + struct device *dev = &epf->dev; > > + > > + config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type); > > + > > + return ntb_group; > > +} > > + > > +/** > > + * epf_ntb_probe() - Probe NTB function driver > > + * @epf: NTB endpoint function device > > + * > > + * Probe NTB function driver when endpoint function bus detects a NTB > > + * endpoint function. > > + */ > > +static int epf_ntb_probe(struct pci_epf *epf) > > +{ > > + struct epf_ntb *ntb; > > + struct device *dev; > > + > > + dev = &epf->dev; > > + > > + ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL); > > + if (!ntb) > > + return -ENOMEM; > > + > > + epf->header = &epf_ntb_header; > > + ntb->epf = epf; > > + epf_set_drvdata(epf, ntb); > > + > > + return 0; > > +} > > + > > +static struct pci_epf_ops epf_ntb_ops = { > > + .bind = epf_ntb_bind, > > + .unbind = epf_ntb_unbind, > > + .add_cfs = epf_ntb_add_cfs, > > +}; > > + > > +static const struct pci_epf_device_id epf_ntb_ids[] = { > > + { > > + .name = "pci_epf_ntb", > > + }, > > + {}, > > +}; > > + > > +static struct pci_epf_driver epf_ntb_driver = { > > + .driver.name = "pci_epf_ntb", > > + .probe = epf_ntb_probe, > > + .id_table = epf_ntb_ids, > > + .ops = &epf_ntb_ops, > > + .owner = THIS_MODULE, > > +}; > > + > > +static int __init epf_ntb_init(void) > > +{ > > + int ret; > > + > > + kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM | > > + WQ_HIGHPRI, 0); > > + ret = pci_epf_register_driver(&epf_ntb_driver); > > + if (ret) { > > + destroy_workqueue(kpcintb_workqueue); > > + pr_err("Failed to register pci epf ntb driver --> %d\n", ret); > > + return ret; > > + } > > + > > + return 0; > > +} > > +module_init(epf_ntb_init); > > + > > +static void __exit epf_ntb_exit(void) > > +{ > > + pci_epf_unregister_driver(&epf_ntb_driver); > > + destroy_workqueue(kpcintb_workqueue); > > +} > > +module_exit(epf_ntb_exit); > > + > > +MODULE_DESCRIPTION("PCI EPF NTB DRIVER"); > > +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@xxxxxx>"); > > +MODULE_LICENSE("GPL v2"); > >