Re: Implement per-key keyboard backlight as auxdisplay?

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Fri, 19 Jan 2024, Hans de Goede <hdegoede@xxxxxxxxxx> wrote:
> For per key controllable rgb LEDs we need to discuss a coordinate
> system. I propose using a fixed size of 16 rows of 64 keys,
> so 64x16 in standard WxH notation.
>
> And then storing RGB in separate bytes, so userspace will then
> always send a buffer of 192 bytes per line (64x3) x 14 rows
> = 3072 bytes. With the kernel driver ignoring parts of
> the buffer where there are no actual keys.
>
> I would then like the map the standard 105 key layout onto this,
> starting at x.y (column.row) coordinates of 16.6 (with 0.0 being
> the top left). Leaving plenty of space on the left top and right
> (and some on the bottom) for extra media key rows, macro keys, etc.
>
> The idea to have the standard layout at a fixed place is to allow
> userspace to have a database of preset patterns which will work
> everywhere.
>
> Note I say standard 105 key layout, but in reality for
> defining the standardized part of the buffer we should
> use the maximum amount of keys per row of all the standard layouts,
> so for row 6 (the ESC row) and for extra keys on the right outside
> the main block we use the standard layout as shown here:

Doesn't the input stack already have to have pretty much all of this
already covered? I can view the keyboard layout in my desktop
environment, and it's a reasonably accurate match, even if unlikely to
be pixel perfect. But crucially, it has to have all the possible layouts
covered already.

And while I would personally hate it, you can imagine a use case where
you'd like a keypress to have a visual effect around the key you
pressed. A kind of force feedback, if you will. I don't actually know,
and correct me if I'm wrong, but feels like implementing that outside of
the input subsystem would be non-trivial.

Cc: Dmitry, could we at least have some input from the input subsystem
POV on this? AFAICT we have received none.


BR,
Jani.


>
> http://www.maxkeyboard.com/images/105_ISO_6_25_Key_Layout.jpg
>
> For the main area of the keyboard looking at:
>
> http://bopqehorizon.weebly.com/uploads/1/3/4/3/134337299/913246919_orig.png
>
> We want to max rows per key, so this means that per row we use
> (from the above image) :
>
> row  7: 106/109 - JIS 
> row  8: 101/104 - ANSI
> row  9: 102/105 - ISO
> row 10: 104/107 - ABNT
> row 11: 106/109 - JIS
>
> (with row 7 being the main area top row)
>
> This way we can address all the possible keys in the various
> standard layouts in one standard wat and then the drivers can
> just skip keys which are not there when preparing the buffer
> to send to the hw / fw.
>
> One open question is if we should add padding after the main
> area so that the printscreen / ins / del / leftarrow of the
> "middle" block of 
>
> http://www.maxkeyboard.com/images/105_ISO_6_25_Key_Layout.jpg
>
> all start at the same x (say 32) or we just pack these directly
> after the main area.
>
> And the same question for the numlock block, do we align
> this to an x of say 36, or pack it ?
>
>
> As for the actual IOCTL API I think there should be
> the following ioctls:
>
> 1. A get-info ioctl returning a struct with the following members:
>
> {
> char name[64]      /* Keyboard model name / identifier */
> int row_begin[16]; /* The x address of the first available key per row. On a std 105key kbd this will be 16 for rows 6-11, 0 for other rows */
> int row_end[16];   /* x+1 for the address of the last available key per row, end - begin gives number of keys in a row */
> int rgb_zones;     /* number of rgb zones for zoned keyboards. Note both
>                       zones and per key addressing may be available if
>                       effects are applied per zone. */
> ?
> }
>
> 2. A set-leds ioctl which takes the earlier discussed 3092 bytes buffer
> to set all the LEDs at once, only valid if at least one row has a non 0 lenght.
>
> 3. A set-zones ioctl which takes an array of bytes sized 3 * number-of-zones
> containing RGB values for each zone
>
> 4. A enum_effects ioctl which takes a struct with the following members:
>
> {
> long size; /* Size of passed in struct including the size member itself */
> long effects_mask[]
> }
>
> the idea being that there is an enum with effects, which gets extended
> as we encounter more effects and the bitmask in effects_mask has a bit set
> for each effects enum value which is supported. effects_mask is an array
> so that we don't run out of bits. If older userspace only passes 1 long
> (size == (2*sizeof(long)) when 2 are needed at some point in the future 
> then the kernel will simply only fill the first long.
>
> 5. A set_effect ioctl which takes a struct with the following members:
>
> {
> long size; /* Size of passed in struct including the size member itself */
> int effect_nr; /* enum value of the effect to enable, 0 for disable effect */
> int zone;  /* zone to apply the effect to */
> int speed; /* cycle speed of the effect in milli-hz */
> char color1[3]; /* effect dependend may be unused. */
> char color2[3]; /* effect dependend may be unused. */
> }
>
> Again the idea with the size member is that the struct can be extended with
> new members if necessary and the kernel will supply a default value for
> older userspaces which provide a smaller struct (note size being smaller
> then sizeof(struct-v1) will invalid).
>
>
> Note this is all just a rough sketch suggestions welcome!
>
> Regards,
>
> Hans
>
>
>

-- 
Jani Nikula, Intel




[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Security]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [ECOS]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux