The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx, MDM9x15 series. It exists as a sub block inside the IPs EBI2 (External Bus Interface 2) and QPIC (Qualcomm Parallel Interface Controller). These IPs provide a broader interface for external slow peripheral devices such as LCD and NAND/NOR flash memory or SRAM like interfaces. We add support for the NAND controller found within EBI2. For the SoCs of our interest, we only use the NAND controller within EBI2. Therefore, it's safe for us to assume that the NAND controller is a standalone block within the SoC. The controller supports 512B, 2kB, 4kB and 8kB page 8-bit and 16-bit NAND flash devices. It contains a HW ECC block that supports BCH ECC (4, 8 and 16 bit correction/step) and RS ECC(4 bit correction/step) that covers main and spare data. The controller contains an internal 512 byte page buffer to which we read/write via DMA. The EBI2 type NAND controller uses ADM DMA for register read/write and data transfers. The controller performs page reads and writes at a codeword/step level of 512 bytes. It can support up to 2 external chips of different configurations. The driver prepares register read and write configuraton descriptors for each codeword, followed by data descriptors to read or write data from the controller's internal buffer. It uses a single ADM DMA channel that we get via dmaengine API. The controller requires 2 ADM CRCIs for command and data flow control. These are passed via DT. Signed-off-by: Archit Taneja <architt@xxxxxxxxxxxxxx> --- drivers/mtd/nand/Kconfig | 7 + drivers/mtd/nand/Makefile | 1 + drivers/mtd/nand/qcom_nandc.c | 1995 +++++++++++++++++++++++++++++++++++++++++ 3 files changed, 2003 insertions(+) create mode 100644 drivers/mtd/nand/qcom_nandc.c diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 7d0150d..03ad13d 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -524,4 +524,11 @@ config MTD_NAND_SUNXI help Enables support for NAND Flash chips on Allwinner SoCs. +config MTD_NAND_QCOM + tristate "Support for NAND on QCOM SoCs" + depends on ARCH_QCOM && QCOM_ADM + help + Enables support for NAND flash chips on SoCs containing the EBI2 NAND + controller. This controller is found on IPQ806x SoC. + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index bd38f21..bdf82a9 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -51,5 +51,6 @@ obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o +obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o nand-objs := nand_base.o nand_bbt.o nand_timings.o diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c new file mode 100644 index 0000000..18b4280 --- /dev/null +++ b/drivers/mtd/nand/qcom_nandc.c @@ -0,0 +1,1995 @@ +/* + * Copyright (c) 2015, The Linux Foundation. All rights reserved. + * + * This software is licensed under the terms of the GNU General Public + * License version 2, as published by the Free Software Foundation, and + * may be copied, distributed, and modified under those terms. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/clk.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/bitops.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/module.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> +#include <linux/delay.h> + +/* NANDc reg offsets */ +#define NAND_FLASH_CMD 0x00 +#define NAND_ADDR0 0x04 +#define NAND_ADDR1 0x08 +#define NAND_FLASH_CHIP_SELECT 0x0c +#define NAND_EXEC_CMD 0x10 +#define NAND_FLASH_STATUS 0x14 +#define NAND_BUFFER_STATUS 0x18 +#define NAND_DEV0_CFG0 0x20 +#define NAND_DEV0_CFG1 0x24 +#define NAND_DEV0_ECC_CFG 0x28 +#define NAND_DEV1_ECC_CFG 0x2c +#define NAND_DEV1_CFG0 0x30 +#define NAND_DEV1_CFG1 0x34 +#define NAND_READ_ID 0x40 +#define NAND_READ_STATUS 0x44 +#define NAND_DEV_CMD0 0xa0 +#define NAND_DEV_CMD1 0xa4 +#define NAND_DEV_CMD2 0xa8 +#define NAND_DEV_CMD_VLD 0xac +#define SFLASHC_BURST_CFG 0xe0 +#define NAND_ERASED_CW_DETECT_CFG 0xe8 +#define NAND_ERASED_CW_DETECT_STATUS 0xec +#define NAND_EBI2_ECC_BUF_CFG 0xf0 +#define FLASH_BUF_ACC 0x100 + +#define NAND_CTRL 0xf00 +#define NAND_VERSION 0xf08 +#define NAND_READ_LOCATION_0 0xf20 +#define NAND_READ_LOCATION_1 0xf24 + +/* NAND_FLASH_CMD bits */ +#define PAGE_ACC BIT(4) +#define LAST_PAGE BIT(5) + +/* NAND_FLASH_CHIP_SELECT bits */ +#define NAND_DEV_SEL 0 +#define DM_EN BIT(2) + +/* NAND_FLASH_STATUS bits */ +#define FS_OP_ERR BIT(4) +#define FS_READY_BSY_N BIT(5) +#define FS_MPU_ERR BIT(8) +#define FS_DEVICE_STS_ERR BIT(16) +#define FS_DEVICE_WP BIT(23) + +/* NAND_BUFFER_STATUS bits */ +#define BS_UNCORRECTABLE_BIT BIT(8) +#define BS_CORRECTABLE_ERR_MSK 0x1f + +/* NAND_DEVn_CFG0 bits */ +#define DISABLE_STATUS_AFTER_WRITE 4 +#define CW_PER_PAGE 6 +#define UD_SIZE_BYTES 9 +#define ECC_PARITY_SIZE_BYTES_RS 19 +#define SPARE_SIZE_BYTES 23 +#define NUM_ADDR_CYCLES 27 +#define STATUS_BFR_READ 30 +#define SET_RD_MODE_AFTER_STATUS 31 + +/* NAND_DEVn_CFG0 bits */ +#define DEV0_CFG1_ECC_DISABLE 0 +#define WIDE_FLASH 1 +#define NAND_RECOVERY_CYCLES 2 +#define CS_ACTIVE_BSY 5 +#define BAD_BLOCK_BYTE_NUM 6 +#define BAD_BLOCK_IN_SPARE_AREA 16 +#define WR_RD_BSY_GAP 17 +#define ENABLE_BCH_ECC 27 + +/* NAND_DEV0_ECC_CFG bits */ +#define ECC_CFG_ECC_DISABLE 0 +#define ECC_SW_RESET 1 +#define ECC_MODE 4 +#define ECC_PARITY_SIZE_BYTES_BCH 8 +#define ECC_NUM_DATA_BYTES 16 +#define ECC_FORCE_CLK_OPEN 30 + +/* NAND_DEV_CMD1 bits */ +#define READ_ADDR 0 + +/* NAND_DEV_CMD_VLD bits */ +#define READ_START_VLD 0 + +/* NAND_EBI2_ECC_BUF_CFG bits */ +#define NUM_STEPS 0 + +/* NAND_ERASED_CW_DETECT_CFG bits */ +#define ERASED_CW_ECC_MASK 1 +#define AUTO_DETECT_RES 0 +#define MASK_ECC (1 << ERASED_CW_ECC_MASK) +#define RESET_ERASED_DET (1 << AUTO_DETECT_RES) +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) + +/* NAND_ERASED_CW_DETECT_STATUS bits */ +#define PAGE_ALL_ERASED BIT(7) +#define CODEWORD_ALL_ERASED BIT(6) +#define PAGE_ERASED BIT(5) +#define CODEWORD_ERASED BIT(4) +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) + +/* Version Mask */ +#define NAND_VERSION_MAJOR_MASK 0xf0000000 +#define NAND_VERSION_MAJOR_SHIFT 28 +#define NAND_VERSION_MINOR_MASK 0x0fff0000 +#define NAND_VERSION_MINOR_SHIFT 16 + +/* NAND OP_CMDs */ +#define PAGE_READ 0x2 +#define PAGE_READ_WITH_ECC 0x3 +#define PAGE_READ_WITH_ECC_SPARE 0x4 +#define PROGRAM_PAGE 0x6 +#define PAGE_PROGRAM_WITH_ECC 0x7 +#define PROGRAM_PAGE_SPARE 0x9 +#define BLOCK_ERASE 0xa +#define FETCH_ID 0xb +#define RESET_DEVICE 0xd + +/* + * the NAND controller performs reads/writes with ECC in 512 byte chunks. + * the driver calls the chunks 'step' or 'codeword' interchangeably + */ +#define NANDC_STEP_SIZE 512 + +/* + * the largest page size we support is 8K, this will have 16 steps/codewords + * of 512 bytes each + */ +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) + +/* we read at most 3 registers per codeword scan */ +#define MAX_REG_RD (3 * MAX_NUM_STEPS) + +/* ECC modes */ +#define ECC_NONE BIT(0) +#define ECC_RS_4BIT BIT(1) +#define ECC_BCH_4BIT BIT(2) +#define ECC_BCH_8BIT BIT(3) + +struct desc_info { + struct list_head list; + + enum dma_transfer_direction dir; + struct scatterlist sgl; + struct dma_async_tx_descriptor *dma_desc; + + bool mapped; +}; + +/* + * holds the current register values that we want to write. acts as a contiguous + * chunk of memory which we use to write the controller registers through DMA. + */ +struct nandc_regs { + u32 cmd; + u32 addr0; + u32 addr1; + u32 chip_sel; + u32 exec; + + u32 cfg0; + u32 cfg1; + u32 ecc_bch_cfg; + + u32 clrflashstatus; + u32 clrreadstatus; + + u32 cmd1; + u32 vld; + + u32 orig_cmd1; + u32 orig_vld; + + u32 ecc_buf_cfg; +}; + +/* + * @data_buffer: DMA buffer for page read/writes + * @buf_size/count/start: markers for chip->read_buf/write_buf functions + * @data_pos/oob_pos: DMA address offset markers for data/oob within + * the data_buffer + * @reg_read_buf: buffer for reading register data via DMA + * @reg_read_pos: marker for data read in reg_read_buf + * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for + * ecc/non-ecc mode for the current nand flash + * device + * @regs: a contiguous chunk of memory for DMA register + * writes + * @list: DMA descriptor list + * @ecc_strength: 4 bit or 8 bit ecc, received via DT + * @bus_width: 8 bit or 16 bit NAND bus width, received via DT + * @cmd_crci: ADM DMA CRCI for command flow control + * @data_crci: ADM DMA CRCI for data flow control + * @ecc_modes: supported ECC modes by the current controller, + * initialized via DT match data + * @cw_size: the number of bytes in a single step/codeword + * of a page, consisting of all data, ecc, spare + * and reserved bytes + * @cw_data: the number of bytes within a codeword protected + * by ECC + * @bch_enabled: flag to tell whether BCH or RS ECC mode is used + * @page: current page in use by the controller + * @erased_page: tracker to tell if last page was erased or not + * @status: value to be returned if NAND_CMD_STATUS command + * is executed + * @dma_done: completion param to denote end of last + * descriptor in the list + */ +struct qcom_nandc_data { + struct platform_device *pdev; + struct device *dev; + + void __iomem *base; + struct resource *res; + + struct clk *core_clk; + struct clk *aon_clk; + + struct dma_chan *chan; + struct dma_slave_config slave_conf; + + struct nand_chip chip; + struct mtd_info mtd; + + u8 *data_buffer; + dma_addr_t data_buffer_paddr; + int buf_size; + int buf_count; + int buf_start; + int data_pos; + int oob_pos; + + u32 *reg_read_buf; + dma_addr_t reg_read_paddr; + int reg_read_pos; + + u32 cfg0, cfg1; + u32 cfg0_raw, cfg1_raw; + u32 ecc_buf_cfg; + u32 ecc_bch_cfg; + u32 clrflashstatus; + u32 clrreadstatus; + u32 sflashc_burst_cfg; + u32 cmd1, vld; + + struct nandc_regs *regs; + + struct list_head list; + + int ecc_strength; + int bus_width; + unsigned int cmd_crci; + unsigned int data_crci; + + u32 ecc_modes; + + int cw_size; + int cw_data; + bool use_ecc; + bool bch_enabled; + int page; + bool erased_page; + u8 status; + int last_command; + struct completion dma_done; +}; + +static inline unsigned int nandc_read(struct qcom_nandc_data *this, int offset) +{ + return ioread32(this->base + offset); +} + +static inline void nandc_write(struct qcom_nandc_data *this, int offset, + unsigned int val) +{ + iowrite32(val, this->base + offset); +} + +static void set_address(struct qcom_nandc_data *this, u16 column, int page) +{ + struct nand_chip *chip = &this->chip; + struct nandc_regs *regs = this->regs; + + if (chip->options & NAND_BUSWIDTH_16) + column >>= 1; + + regs->addr0 = page << 16 | column; + regs->addr1 = page >> 16 & 0xff; +} + +static void update_rw_regs(struct qcom_nandc_data *this, int num_cw, bool read) +{ + struct nandc_regs *regs = this->regs; + + if (this->use_ecc) { + if (read) + regs->cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; + else + regs->cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; + + regs->cfg0 = (this->cfg0 & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + + regs->cfg1 = this->cfg1; + regs->ecc_bch_cfg = this->ecc_bch_cfg; + } else { + if (read) + regs->cmd = PAGE_READ | PAGE_ACC | LAST_PAGE; + else + regs->cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; + + regs->cfg0 = (this->cfg0_raw & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + + regs->cfg1 = this->cfg1_raw; + regs->ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; + } + + regs->ecc_buf_cfg = this->ecc_buf_cfg; + regs->clrflashstatus = this->clrflashstatus; + regs->clrreadstatus = this->clrreadstatus; + regs->exec = 1; +} + +/* + * write_reg_dma: prepares a descriptor to write a given number of + * contiguous registers + * + * @first: offset of the first register in the contiguous block + * @reg: starting address containing the reg values to write + * @num_regs: number of registers to write + * @flow_control: flow control enabled/disabled + */ +static int write_reg_dma(struct qcom_nandc_data *this, int first, + u32 *reg, int num_regs, bool flow_control) +{ + struct desc_info *desc; + struct dma_async_tx_descriptor *dma_desc; + struct scatterlist *sgl; + int size; + int r; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + list_add_tail(&desc->list, &this->list); + + sgl = &desc->sgl; + + size = num_regs * sizeof(u32); + + sg_init_one(sgl, reg, size); + + desc->dir = DMA_MEM_TO_DEV; + + dma_map_sg(this->dev, sgl, 1, desc->dir); + + this->slave_conf.device_fc = flow_control ? 1 : 0; + this->slave_conf.dst_addr = this->res->start + first; + this->slave_conf.dst_maxburst = 16; + this->slave_conf.slave_id = this->cmd_crci; + + r = dmaengine_slave_config(this->chan, &this->slave_conf); + if (r) { + dev_err(this->dev, "failed to configure dma channel\n"); + goto err; + } + + dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0); + if (!dma_desc) { + dev_err(this->dev, "failed to prepare register write desc\n"); + r = PTR_ERR(dma_desc); + goto err; + } + + desc->dma_desc = dma_desc; + + desc->mapped = true; + + return 0; +err: + kfree(desc); + + return r; +} + +/* + * read_reg_dma: prepares a descriptor to read a given number of + * contiguous registers to the reg_read_buf pointer + * + * @first: offset of the first register in the contiguous block + * @num_regs: number of registers to read + * @flow_control: flow control enabled/disabled + */ +static int read_reg_dma(struct qcom_nandc_data *this, int first, + int num_regs, bool flow_control) +{ + struct desc_info *desc; + struct dma_async_tx_descriptor *dma_desc; + struct scatterlist *sgl; + int size; + int r; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + list_add_tail(&desc->list, &this->list); + + sgl = &desc->sgl; + + size = num_regs * sizeof(u32); + + sg_init_one(sgl, this->reg_read_buf + this->reg_read_pos, size); + + desc->dir = DMA_DEV_TO_MEM; + + dma_map_sg(this->dev, sgl, 1, desc->dir); + + this->slave_conf.device_fc = flow_control ? 1 : 0; + this->slave_conf.src_addr = this->res->start + first; + this->slave_conf.src_maxburst = 16; + this->slave_conf.slave_id = this->data_crci; + + r = dmaengine_slave_config(this->chan, &this->slave_conf); + if (r) { + dev_err(this->dev, "failed to configure dma channel\n"); + goto err; + } + + dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0); + if (!dma_desc) { + dev_err(this->dev, "failed to prepare register read desc\n"); + r = PTR_ERR(dma_desc); + goto err; + } + + desc->dma_desc = dma_desc; + + desc->mapped = true; + + this->reg_read_pos += num_regs; + + return 0; +err: + kfree(desc); + + return r; +} + +/* + * read_data_dma: prepares a DMA descriptor to transfer data from the + * controller's internal buffer to data_buffer + * + * @reg_off: offset within the controller's data buffer + * @buf_off: offset in data_buffer where we want to write the data + * read from the controller + * @size: DMA transaction size in bytes + */ +static int read_data_dma(struct qcom_nandc_data *this, int reg_off, + int *buf_off, int size) +{ + struct desc_info *desc; + struct dma_async_tx_descriptor *dma_desc; + struct scatterlist *sgl; + void *vaddr; + dma_addr_t address; + int r; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + list_add_tail(&desc->list, &this->list); + + sgl = &desc->sgl; + + vaddr = this->data_buffer + *buf_off; + address = this->data_buffer_paddr + *buf_off; + + sg_init_one(sgl, vaddr, size); + sgl->dma_address = address; + + desc->dir = DMA_DEV_TO_MEM; + + this->slave_conf.device_fc = 0; + this->slave_conf.src_addr = this->res->start + reg_off; + this->slave_conf.src_maxburst = 16; + + r = dmaengine_slave_config(this->chan, &this->slave_conf); + if (r) { + dev_err(this->dev, "failed to configure dma channel\n"); + goto err; + } + + dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0); + if (!dma_desc) { + dev_err(this->dev, "failed to prepare data read desc\n"); + r = PTR_ERR(dma_desc); + goto err; + } + + desc->dma_desc = dma_desc; + + *buf_off += size; + + return 0; +err: + kfree(desc); + + return r; +} + +/* + * write_data_dma: prepares a DMA descriptor to transfer data from + * data_buffer to the controller's internal buffer + * + * @reg_off: offset within the controller's data buffer + * @buf_off: offset in data_buffer where we want to read the data to + * be written to the controller + * @size: DMA transaction size in bytes + */ +static int write_data_dma(struct qcom_nandc_data *this, int reg_off, + int *buf_off, int size) +{ + struct desc_info *desc; + struct dma_async_tx_descriptor *dma_desc; + struct scatterlist *sgl; + void *vaddr; + dma_addr_t address; + int r; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + list_add_tail(&desc->list, &this->list); + + sgl = &desc->sgl; + + vaddr = this->data_buffer + *buf_off; + address = this->data_buffer_paddr + *buf_off; + + sg_init_one(sgl, vaddr, size); + sgl->dma_address = address; + + desc->dir = DMA_MEM_TO_DEV; + + this->slave_conf.device_fc = 0; + this->slave_conf.dst_addr = this->res->start + reg_off; + this->slave_conf.dst_maxburst = 16; + + r = dmaengine_slave_config(this->chan, &this->slave_conf); + if (r) { + dev_err(this->dev, "failed to configure dma channel\n"); + goto err; + } + + dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0); + if (!dma_desc) { + dev_err(this->dev, "failed to prepare data write desc\n"); + r = PTR_ERR(dma_desc); + goto err; + } + + desc->dma_desc = dma_desc; + + *buf_off += size; + + return 0; +err: + kfree(desc); + + return r; +} + +/* read_cw: helper to prepare descriptors to read one codeword + * + * @data_size: data bytes to be fetched + * @oob_size: oob bytes to be fetched + */ +static int read_cw(struct qcom_nandc_data *this, int data_size, int oob_size) +{ + struct nandc_regs *regs = this->regs; + + write_reg_dma(this, NAND_FLASH_CMD, ®s->cmd, 3, true); + write_reg_dma(this, NAND_DEV0_CFG0, ®s->cfg0, 3, false); + write_reg_dma(this, NAND_EBI2_ECC_BUF_CFG, ®s->ecc_buf_cfg, + 1, false); + + write_reg_dma(this, NAND_EXEC_CMD, ®s->exec, 1, false); + + read_reg_dma(this, NAND_FLASH_STATUS, 2, true); + read_reg_dma(this, NAND_ERASED_CW_DETECT_STATUS, 1, false); + + if (data_size) + read_data_dma(this, FLASH_BUF_ACC, &this->data_pos, data_size); + + if (oob_size) + read_data_dma(this, FLASH_BUF_ACC + data_size, &this->oob_pos, + oob_size); + + return 0; +} + +/* + * write_cw: helper to prepare descriptors to write one codeword + * + * @data_size: data bytes to be written to NANDc internal buffer + * @oob_size: oob bytes to be written to NANDc internal buffer + */ +static int write_cw(struct qcom_nandc_data *this, int data_size, int oob_size) +{ + struct nandc_regs *regs = this->regs; + + write_reg_dma(this, NAND_FLASH_CMD, ®s->cmd, 3, true); + write_reg_dma(this, NAND_DEV0_CFG0, ®s->cfg0, 3, false); + write_reg_dma(this, NAND_EBI2_ECC_BUF_CFG, ®s->ecc_buf_cfg, + 1, false); + + write_data_dma(this, FLASH_BUF_ACC, &this->data_pos, data_size); + + /* oob */ + if (oob_size) + write_data_dma(this, FLASH_BUF_ACC + data_size, &this->oob_pos, + oob_size); + + write_reg_dma(this, NAND_EXEC_CMD, ®s->exec, 1, false); + + read_reg_dma(this, NAND_FLASH_STATUS, 1, true); + + write_reg_dma(this, NAND_FLASH_STATUS, ®s->clrflashstatus, 1, false); + write_reg_dma(this, NAND_READ_STATUS, ®s->clrreadstatus, 1, false); + + return 0; +} + +/* + * the following functions are used within chip->cmdfunc() to perform different + * NAND_CMD_* commands + */ + +/* nandc_param: sets up descriptors for NAND_CMD_PARAM */ +static int nandc_param(struct qcom_nandc_data *this) +{ + int size; + struct nandc_regs *regs = this->regs; + + /* + * NAND_CMD_PARAM is called before we know much about the FLASH chip + * in use. we configure the controller to perform a raw read of 512 + * bytes to read onfi params + */ + regs->cmd = PAGE_READ | PAGE_ACC | LAST_PAGE; + regs->addr0 = 0; + regs->addr1 = 0; + regs->cfg0 = 0 << CW_PER_PAGE + | 512 << UD_SIZE_BYTES + | 5 << NUM_ADDR_CYCLES + | 0 << SPARE_SIZE_BYTES; + + regs->cfg1 = 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | 17 << BAD_BLOCK_BYTE_NUM + | 1 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | 0 << WIDE_FLASH + | 1 << DEV0_CFG1_ECC_DISABLE; + + regs->ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; + + /* configure CMD1 and VLD for ONFI param probing */ + regs->vld = (this->vld & ~(1 << READ_START_VLD)) + | 0 << READ_START_VLD; + + regs->cmd1 = (this->cmd1 & ~(0xFF << READ_ADDR)) + | NAND_CMD_PARAM << READ_ADDR; + + regs->exec = 1; + + regs->orig_cmd1 = this->cmd1; + regs->orig_vld = this->vld; + + write_reg_dma(this, NAND_DEV_CMD_VLD, ®s->vld, 1, false); + write_reg_dma(this, NAND_DEV_CMD1, ®s->cmd1, 1, false); + + size = this->buf_count = 512; + + read_cw(this, size, 0); + + /* restore CMD1 and VLD regs */ + write_reg_dma(this, NAND_DEV_CMD1, ®s->orig_cmd1, 1, false); + write_reg_dma(this, NAND_DEV_CMD_VLD, ®s->orig_vld, 1, false); + + return 0; +} + +/* + * read_page: sets up descriptors for NAND_CMD_READ0/NAND_CMD_READOOB + * @oob_only: only read oob area to data_buffer, discard data + */ +static int read_page(struct qcom_nandc_data *this, bool oob_only) +{ + struct nand_chip *chip = &this->chip; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage = ecc->steps; + int i; + + /* queue cmd descs for each codeword */ + for (i = 0; i < cwperpage; i++) { + int data_size, oob_size; + + if (i == (cwperpage - 1)) { + data_size = ecc->size - ((cwperpage - 1) << 2); + oob_size = (cwperpage << 2) + ecc->bytes; + } else { + data_size = this->cw_data; + oob_size = ecc->bytes; + } + + read_cw(this, oob_only ? 0 : data_size, oob_size); + } + + return 0; +} + +/* + * write_page: sets up descriptors for NAND_CMD_PAGEPROG. this function writes + * the complete page along with oob data. currently, we can't + * configure our controller to write only oob or only data + */ +static int write_page(struct qcom_nandc_data *this) +{ + struct nand_chip *chip = &this->chip; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage = ecc->steps; + int i; + + /* queue cmd descs for each word */ + for (i = 0; i < cwperpage; i++) { + int data_size, oob_size; + + if (i == (cwperpage - 1)) { + data_size = ecc->size - ((cwperpage - 1) << 2); + oob_size = cwperpage << 2; + + /* + * the last codewords contains both ecc and oob, + * configure dma descs for both of them + */ + write_cw(this, data_size, oob_size); + } else { + data_size = this->cw_data; + oob_size = ecc->bytes; + + /* + * we skip writing oob for the first n - 1 codewords as + * they consist of just ecc, that's written by the + * controller by itself, we just move our marker + * accordingly + */ + write_cw(this, data_size, 0); + + this->oob_pos += oob_size; + } + } + + return 0; +} + +/* erase_block: sets up descriptors for NAND_CMD_ERASE1 */ +static int erase_block(struct qcom_nandc_data *this, int page_addr) +{ + struct nandc_regs *regs = this->regs; + + regs->cmd = BLOCK_ERASE | PAGE_ACC | LAST_PAGE; + regs->addr0 = page_addr; + regs->addr1 = 0; + regs->cfg0 = this->cfg0_raw & ~(7 << CW_PER_PAGE); + regs->cfg1 = this->cfg1_raw; + regs->exec = 1; + regs->clrflashstatus = this->clrflashstatus; + regs->clrreadstatus = this->clrreadstatus; + + write_reg_dma(this, NAND_FLASH_CMD, ®s->cmd, 3, true); + write_reg_dma(this, NAND_DEV0_CFG0, ®s->cfg0, 2, false); + write_reg_dma(this, NAND_EXEC_CMD, ®s->exec, 1, false); + + read_reg_dma(this, NAND_FLASH_STATUS, 1, true); + + write_reg_dma(this, NAND_FLASH_STATUS, ®s->clrflashstatus, 1, false); + write_reg_dma(this, NAND_READ_STATUS, ®s->clrreadstatus, 1, false); + + return 0; +} + +/* read_id: sets up descriptors for NAND_CMD_READID */ +static int read_id(struct qcom_nandc_data *this, int column) +{ + struct nandc_regs *regs = this->regs; + + if (column == -1) + return 0; + + regs->cmd = FETCH_ID; + regs->addr0 = column; + regs->addr1 = 0; + regs->chip_sel = DM_EN; + regs->exec = 1; + + write_reg_dma(this, NAND_FLASH_CMD, ®s->cmd, 4, true); + write_reg_dma(this, NAND_EXEC_CMD, ®s->exec, 1, false); + + read_reg_dma(this, NAND_READ_ID, 1, true); + + return 0; +} + +/* reset: sets up descriptors for NAND_CMD_RESET */ +static int reset(struct qcom_nandc_data *this) +{ + struct nandc_regs *regs = this->regs; + + regs->cmd = RESET_DEVICE; + regs->exec = 1; + + write_reg_dma(this, NAND_FLASH_CMD, ®s->cmd, 1, true); + write_reg_dma(this, NAND_EXEC_CMD, ®s->exec, 1, false); + + read_reg_dma(this, NAND_FLASH_STATUS, 1, true); + + return 0; +} + +static void dma_callback(void *param) +{ + struct qcom_nandc_data *this = (struct qcom_nandc_data *) param; + struct completion *c = &this->dma_done; + + complete(c); +} + +static int submit_descs(struct qcom_nandc_data *this) +{ + struct completion *c = &this->dma_done; + struct desc_info *desc; + int r; + + init_completion(c); + + list_for_each_entry(desc, &this->list, list) { + /* + * we add a callback the last descriptor in our list to notify + * completion of command + */ + if (list_is_last(&desc->list, &this->list)) { + desc->dma_desc->callback = dma_callback; + desc->dma_desc->callback_param = this; + } + + dmaengine_submit(desc->dma_desc); + } + + dma_async_issue_pending(this->chan); + + r = wait_for_completion_timeout(c, msecs_to_jiffies(500)); + if (!r) + return -EINVAL; + + return 0; +} + +static void free_descs(struct qcom_nandc_data *this) +{ + struct desc_info *desc, *n; + + list_for_each_entry_safe(desc, n, &this->list, list) { + list_del(&desc->list); + if (desc->mapped) + dma_unmap_sg(this->dev, &desc->sgl, 1, desc->dir); + kfree(desc); + } +} + +static void pre_command(struct qcom_nandc_data *this, int command) +{ + struct mtd_info *mtd = &this->mtd; + + this->buf_count = 0; + this->buf_start = 0; + this->data_pos = 0; + this->oob_pos = mtd->writesize; + this->reg_read_pos = 0; + this->use_ecc = false; + this->erased_page = false; + this->last_command = command; + + if (command == NAND_CMD_READ0 || + command == NAND_CMD_READOOB || + command == NAND_CMD_SEQIN || + command == NAND_CMD_PARAM) { + + this->buf_count = mtd->writesize + mtd->oobsize; + memset(this->data_buffer, 0xff, this->buf_count); + memset(this->reg_read_buf, 0, MAX_REG_RD * sizeof(u32)); + } +} + +/* + * when using RS ECC, the NAND controller flags an error when reading an + * erased page. however, there are special characters at certain offsets when + * we read the erased page. we check here if the page is really empty. if so, + * we replace the magic characters with 0xffs + */ +static void empty_page_fixup(struct qcom_nandc_data *this) +{ + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->chip; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage = ecc->steps; + int i; + + /* if BCH is enabled, HW will take care of detecting erased pages */ + if (this->bch_enabled || !this->use_ecc) + return; + + for (i = 0; i < cwperpage; i++) { + u8 *empty1, *empty2; + u32 flash_status = this->reg_read_buf[3 * i]; + + /* + * an erased page flags an error in NAND_FLASH_STATUS, check if + * the page is erased by looking for 0x54s at offsets 3 and 175 + * from the beginning of each codeword + */ + if (flash_status & FS_OP_ERR) { + empty1 = &this->data_buffer[3 + i * this->cw_data]; + empty2 = &this->data_buffer[175 + i * this->cw_data]; + + /* + * the error wasn't because of an erased page, bail out + * and let someone else do the error checking + */ + if (!((*empty1 == 0x54 && *empty2 == 0xff) || + (*empty1 == 0xff && *empty2 == 0x54))) + return; + } + } + + for (i = 0; i < mtd->writesize && (this->data_buffer[i] == 0xff || + (i % this->cw_data == 3 || i % this->cw_data == 175)); i++) { + } + + if (i < mtd->writesize) + return; + + /* + * the whole page is 0xffs besides the magic offsets, we replace the + * 0x54s with 0xffs + */ + for (i = 0; i < cwperpage; i++) { + this->data_buffer[3 + i * this->cw_data] = 0xff; + this->data_buffer[175 + i * this->cw_data] = 0xff; + } + + /* + * raise the erased page flag so that parse_read_errors() doesn't think + * it's an error + */ + this->erased_page = true; +} + +/* + * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our + * privately maintained status byte, this status byte can be read after + * NAND_CMD_STATUS is called + */ +static void parse_erase_write_errors(struct qcom_nandc_data *this, int command) +{ + struct nand_chip *chip = &this->chip; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int num_cw; + int i; + + num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; + + for (i = 0; i < num_cw; i++) { + u32 flash_status; + + flash_status = this->reg_read_buf[i]; + + if (flash_status & FS_MPU_ERR) + this->status &= ~NAND_STATUS_WP; + + if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && + (flash_status & FS_DEVICE_STS_ERR))) + this->status |= NAND_STATUS_FAIL; + } +} + +static void post_command(struct qcom_nandc_data *this, int command) +{ + switch (command) { + case NAND_CMD_READID: + memcpy(this->data_buffer, this->reg_read_buf, this->buf_count); + break; + case NAND_CMD_READ0: + case NAND_CMD_READ1: + empty_page_fixup(this); + break; + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + parse_erase_write_errors(this, command); + break; + default: + break; + } +} + +static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct qcom_nandc_data *this = chip->priv; + bool wait = true; + int r = 0; + + pre_command(this, command); + + switch (command) { + case NAND_CMD_RESET: + r = reset(this); + break; + + case NAND_CMD_READID: + this->buf_count = 4; + r = read_id(this, column); + break; + + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + this->buf_start = column; + this->use_ecc = true; + + if (command == NAND_CMD_READOOB) + this->buf_start += mtd->writesize; + + /* + * for now, the controller always reads complete page data, we + * configure DMA to read data + oob or only oob from the + * controller's buffer into data_buffer + */ + set_address(this, 0, page_addr); + update_rw_regs(this, ecc->steps, true); + + r = read_page(this, command == NAND_CMD_READOOB); + break; + + case NAND_CMD_PARAM: + r = nandc_param(this); + break; + + case NAND_CMD_SEQIN: + this->buf_start = column; + this->page = page_addr; + set_address(this, 0, page_addr); + wait = false; + break; + + case NAND_CMD_PAGEPROG: + this->use_ecc = true; + update_rw_regs(this, ecc->steps, false); + r = write_page(this); + break; + + case NAND_CMD_ERASE1: + r = erase_block(this, page_addr); + break; + + case NAND_CMD_STATUS: + wait = false; + break; + + case NAND_CMD_NONE: + default: + wait = false; + break; + } + + if (r) { + dev_err(this->dev, "failure executing command %d\n", + command); + free_descs(this); + return; + } + + if (wait) { + r = submit_descs(this); + if (r) + dev_err(this->dev, + "failure submitting descs for command %d\n", + command); + } + + free_descs(this); + + post_command(this, command); +} + +/* + * the bad block marker is readable only when we read the page with ECC + * disabled. all the read/write commands like NAND_CMD_READOOB, NAND_CMD_READ0 + * and NAND_CMD_PAGEPROG are executed in the driver with ECC enabled. therefore, + * the default nand helper functions to detect a bad block or mark a bad block + * can't be used. + */ +static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + int page, r, mark, bad = 0; + struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage = ecc->steps; + struct qcom_nandc_data *this = chip->priv; + u32 flash_status; + + pre_command(this, NAND_CMD_NONE); + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + + /* + * configure registers for a raw page read, the address is set to the + * beginning of the last codeword + */ + this->use_ecc = false; + set_address(this, this->cw_size * (cwperpage - 1), page); + + /* we just read one codeword that contains the bad block marker */ + update_rw_regs(this, 1, true); + + read_cw(this, this->cw_size, 0); + + r = submit_descs(this); + if (r) { + dev_err(this->dev, "error submitting descs\n"); + goto err; + } + + flash_status = this->reg_read_buf[0]; + + /* + * unable to read the marker successfully, is that sufficient to report + * the block as bad? + */ + if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) { + dev_warn(this->dev, "error while reading bad block mark\n"); + goto err; + } + + mark = mtd->writesize - (this->cw_size * (cwperpage - 1)); + + if (chip->options & NAND_BUSWIDTH_16) + bad = this->data_buffer[mark] != 0xff || + this->data_buffer[mark + 1] != 0xff; + + bad = this->data_buffer[mark] != 0xff; +err: + free_descs(this); + + return bad; +} + +static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + int page, r; + struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage = ecc->steps; + struct qcom_nandc_data *this = chip->priv; + u32 flash_status; + + pre_command(this, NAND_CMD_NONE); + + /* fill our internal buffer's oob area with 0's */ + memset(this->data_buffer, 0x00, mtd->writesize + mtd->oobsize); + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + + this->use_ecc = false; + set_address(this, this->cw_size * (cwperpage - 1), page); + + /* we just write to one codeword that contains the bad block marker*/ + update_rw_regs(this, 1, false); + + /* + * overwrite the last codeword with 0s, this will result in setting + * the bad block marker to 0 too + */ + write_cw(this, this->cw_size, 0); + + r = submit_descs(this); + if (r) { + dev_err(this->dev, "error submitting descs\n"); + r = -EIO; + goto err; + } + + flash_status = this->reg_read_buf[0]; + + if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) + r = -EIO; + +err: + free_descs(this); + + return r; +} + +static int parse_read_errors(struct qcom_nandc_data *this) +{ + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->chip; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage = ecc->steps; + unsigned int max_bitflips = 0; + int i; + + for (i = 0; i < cwperpage; i++) { + int stat; + u32 flash_status = this->reg_read_buf[3 * i]; + u32 buffer_status = this->reg_read_buf[3 * i + 1]; + u32 erased_cw_status = this->reg_read_buf[3 * i + 2]; + + if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) { + + /* ignore erased codeword errors */ + if (this->bch_enabled) { + if ((erased_cw_status & ERASED_CW) == ERASED_CW) + continue; + } else if (this->erased_page == true) { + continue; + } + + if (buffer_status & BS_UNCORRECTABLE_BIT) { + mtd->ecc_stats.failed++; + continue; + } + } + + stat = buffer_status & BS_CORRECTABLE_ERR_MSK; + mtd->ecc_stats.corrected += stat; + + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + return max_bitflips; +} + +static int qcom_nandc_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, + int page) +{ + struct qcom_nandc_data *this = chip->priv; + + chip->read_buf(mtd, buf, mtd->writesize); + if (oob_required) + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return parse_read_errors(this); +} + +/* + * the NAND controller cannot write only data or only oob within a codeword. + * this is because the controller can't be configured on the fly between + * codewords to change the amount of data that needs to be written to the + * nand chip. this results in a write performance drop. this can be + * optimized if we perform the extra read-copy-write operation only on the + * codeword that has spare data + */ +static int qcom_nandc_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required) +{ + struct qcom_nandc_data *this = chip->priv; + + /* it's all okay when we intend to write both data and oob */ + if (oob_required) { + chip->write_buf(mtd, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; + } + + /* + * the controller will write oob even when we don't want to write to it. + * we read the original OOB, copy it to our buffer and do a full page + * write so that the OOB doesn't change + */ + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, this->page); + + this->buf_start = 0; + + chip->write_buf(mtd, buf, mtd->writesize); + + return 0; +} + +static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct qcom_nandc_data *this = chip->priv; + int status = 0; + + /* read complete data + oob */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* + * override the read oob with the new oob content in oob_poi, perform + * a full page write + */ + memcpy(this->data_buffer + mtd->writesize, chip->oob_poi, + mtd->oobsize); + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct qcom_nandc_data *this = chip->priv; + uint8_t *buf = (uint8_t *) this->data_buffer; + uint8_t ret = 0x0; + + if (this->last_command == NAND_CMD_STATUS) { + ret = this->status; + + this->status = NAND_STATUS_READY | NAND_STATUS_WP; + + return ret; + } + + if (this->buf_start < this->buf_count) + ret = buf[this->buf_start++]; + + return ret; +} + +/* + * TODO: We always copy DMA to our internal buffer. Try to use the buffer passed + * mtd first. Fallback to data_buffer only if the upper layer buffer can't be + * used + */ +static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct qcom_nandc_data *this = chip->priv; + int real_len = min_t(size_t, len, this->buf_count - this->buf_start); + + memcpy(buf, this->data_buffer + this->buf_start, real_len); + this->buf_start += real_len; +} + +static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct nand_chip *chip = mtd->priv; + struct qcom_nandc_data *this = chip->priv; + int real_len = min_t(size_t, len, this->buf_count - this->buf_start); + + memcpy(this->data_buffer + this->buf_start, buf, real_len); + + this->buf_start += real_len; +} + +/* we support only one external chip for now */ +static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd->priv; + struct qcom_nandc_data *this = chip->priv; + + if (chipnr <= 0) + return; + + dev_warn(this->dev, "invalid chip select\n"); +} + +/* + * NAND controller page layout info + * + * |-----------------------| |---------------------------------| + * | xx.......xx| | *********xx.......xx| + * | DATA xx..ECC..xx| | DATA **SPARE**xx..ECC..xx| + * | (516) xx.......xx| | (516-n*4) **(n*4)**xx.......xx| + * | xx.......xx| | *********xx.......xx| + * |-----------------------| |---------------------------------| + * codeword 1,2..n-1 codeword n + * <---(528/532 Bytes)----> <-------(528/532 Bytes)----------> + * + * n = number of codewords in the page + * . = ECC bytes + * * = spare bytes + * x = unused/reserved bytes + * + * 2K page: n = 4, spare = 16 bytes + * 4K page: n = 8, spare = 32 bytes + * 8K page: n = 16, spare = 64 bytes + * + * the qcom nand controller operates at a sub page/codeword level. each + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. + * the number of ECC bytes vary based on the ECC strength and the bus width. + * + * the first n - 1 codewords contains 516 bytes of user data, the remaining + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains + * both user data and spare(oobavail) bytes that sum up to 516 bytes. + * + * the layout described above is used by the controller when the ECC block is + * enabled. When we read a page with ECC enabled, the unused/reserved bytes are + * skipped and not copied to our internal buffer. therefore, the nand_ecclayout + * layouts defined below doesn't consider the positions occupied by the reserved + * bytes + * + * when the ECC block is disabled, one unused byte (or two for 16 bit bus width) + * in the last codeword is the position of bad block marker. the bad block + * marker cannot be accessed when ECC is enabled. + * + */ + +/* 2K page, 4 bit ECC */ +static struct nand_ecclayout layout_oob_64 = { + .eccbytes = 40, + .eccpos = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + }, + + .oobfree = { + { 30, 16 }, + }, +}; + +/* 4K page, 4 bit ECC, 8/16 bit bus width */ +static struct nand_ecclayout layout_oob_128 = { + .eccbytes = 80, + .eccpos = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, + }, + .oobfree = { + { 70, 32 }, + }, +}; + +/* 4K page, 8 bit ECC, 8 bit bus width */ +static struct nand_ecclayout layout_oob_224_x8 = { + .eccpos = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, + 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, + 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, + 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, + 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, + 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, + }, + .oobfree = { + { 91, 32 }, + }, +}; + +/* 4K page, 8 bit ECC, 16 bit bus width */ +static struct nand_ecclayout layout_oob_224_x16 = { + .eccbytes = 112, + .eccpos = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, + 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, + 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, + 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, + 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, + 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, + }, + .oobfree = { + { 98, 32 }, + }, +}; + +/* 8K page, 4 bit ECC, 8/16 bit bus width */ +static struct nand_ecclayout layout_oob_256 = { + .eccbytes = 160, + .eccpos = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, + 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, + 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, + 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, + 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, + 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, + }, + .oobfree = { + { 151, 64 }, + }, +}; + +/* + * this is called before scan_ident, we do some minimal configurations so + * that reading ID and ONFI params work + */ +static void qcom_nandc_pre_init(struct qcom_nandc_data *this) +{ + /* kill onenand */ + nandc_write(this, SFLASHC_BURST_CFG, 0); + + /* enable ADM DMA */ + nandc_write(this, NAND_FLASH_CHIP_SELECT, DM_EN); + + /* save the original values of these registers */ + this->cmd1 = nandc_read(this, NAND_DEV_CMD1); + this->vld = nandc_read(this, NAND_DEV_CMD_VLD); + + /* initial status value */ + this->status = NAND_STATUS_READY | NAND_STATUS_WP; +} + +static int qcom_nandc_ecc_init(struct qcom_nandc_data *this) +{ + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->chip; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage; + bool wide_bus; + + /* the nand controller fetches codewords/chunks of 512 bytes */ + cwperpage = mtd->writesize >> 9; + + /* strength is the net strength of the complete page */ + ecc->strength = this->ecc_strength * cwperpage; + + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; + + if (ecc->strength >= 32) { + /* 8 bit ECC defaults to BCH ECC on all platforms */ + ecc->bytes = wide_bus ? 14 : 13; + } else { + /* + * if the controller supports BCH for 4 bit ECC, the controller + * uses lesser bytes for ECC. If RS is used, the ECC bytes is + * always 10 bytes + */ + if (this->ecc_modes & ECC_BCH_4BIT) + ecc->bytes = wide_bus ? 8 : 7; + else + ecc->bytes = 10; + } + + /* each step consists of 512 bytes of data */ + ecc->size = NANDC_STEP_SIZE; + + ecc->read_page = qcom_nandc_read_page_hwecc; + ecc->write_page = qcom_nandc_write_page_hwecc; + ecc->write_oob = qcom_nandc_write_oob; + + switch (mtd->oobsize) { + case 64: + ecc->layout = &layout_oob_64; + break; + case 128: + ecc->layout = &layout_oob_128; + break; + case 224: + if (wide_bus) + ecc->layout = &layout_oob_224_x16; + else + ecc->layout = &layout_oob_224_x8; + break; + case 256: + ecc->layout = &layout_oob_256; + break; + default: + dev_err(this->dev, "unsupported NAND device, oobsize %d\n", + mtd->oobsize); + return -ENODEV; + } + + ecc->mode = NAND_ECC_HW; + + /* enable ecc by default */ + this->use_ecc = true; + + /* free old buffer, allocate one with page data + oob size */ + dma_free_coherent(this->dev, this->buf_size, this->data_buffer, + this->data_buffer_paddr); + + this->buf_size = mtd->writesize + mtd->oobsize; + + this->data_buffer = dma_alloc_coherent(this->dev, this->buf_size, + &this->data_buffer_paddr, GFP_KERNEL); + if (!this->data_buffer) + return -ENOMEM; + + return 0; +} + +static void qcom_nandc_hw_post_init(struct qcom_nandc_data *this) +{ + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->chip; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cwperpage = ecc->steps; + int spare_bytes, bad_block_byte; + bool wide_bus; + int ecc_mode = 0; + + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; + + if (ecc->strength >= 32) { + this->cw_size = 532; + + spare_bytes = wide_bus ? 0 : 2; + + this->bch_enabled = true; + ecc_mode = 1; + } else { + this->cw_size = 528; + + if (this->ecc_modes & ECC_BCH_4BIT) { + spare_bytes = wide_bus ? 2 : 4; + + this->bch_enabled = true; + ecc_mode = 0; + } else { + spare_bytes = wide_bus ? 0 : 1; + } + } + + /* + * DATA_UD_BYTES varies based on whether the read/write command protects + * spare data with ECC too. We protect spare data by default, so we set + * it to main + spare data, which are 512 and 4 bytes respectively. + */ + this->cw_data = 516; + + bad_block_byte = mtd->writesize - this->cw_size * (cwperpage - 1) + 1; + + this->cfg0 = (cwperpage - 1) << CW_PER_PAGE + | this->cw_data << UD_SIZE_BYTES + | 0 << DISABLE_STATUS_AFTER_WRITE + | 5 << NUM_ADDR_CYCLES + | ecc->bytes << ECC_PARITY_SIZE_BYTES_RS + | 0 << STATUS_BFR_READ + | 1 << SET_RD_MODE_AFTER_STATUS + | spare_bytes << SPARE_SIZE_BYTES; + + this->cfg1 = 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | bad_block_byte << BAD_BLOCK_BYTE_NUM + | 0 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | wide_bus << WIDE_FLASH + | this->bch_enabled << ENABLE_BCH_ECC; + + this->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE + | this->cw_size << UD_SIZE_BYTES + | 5 << NUM_ADDR_CYCLES + | 0 << SPARE_SIZE_BYTES; + + this->cfg1_raw = 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | 17 << BAD_BLOCK_BYTE_NUM + | 1 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | wide_bus << WIDE_FLASH + | 1 << DEV0_CFG1_ECC_DISABLE; + + this->ecc_bch_cfg = this->bch_enabled << ECC_CFG_ECC_DISABLE + | 0 << ECC_SW_RESET + | this->cw_data << ECC_NUM_DATA_BYTES + | 1 << ECC_FORCE_CLK_OPEN + | ecc_mode << ECC_MODE + | ecc->bytes << ECC_PARITY_SIZE_BYTES_BCH; + + this->ecc_buf_cfg = 0x203 << NUM_STEPS; + + this->clrflashstatus = FS_READY_BSY_N; + this->clrreadstatus = 0xc0; + + dev_dbg(this->dev, "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x " + "cw_size %d cw_data %d strength %d parity_bytes %d " + "steps %d\n", this->cfg0, this->cfg1, this->ecc_buf_cfg, + this->ecc_bch_cfg, this->cw_size, this->cw_data, + ecc->strength, ecc->bytes, cwperpage); +} + +static int qcom_nandc_alloc(struct qcom_nandc_data *this) +{ + int r; + + r = dma_set_coherent_mask(this->dev, DMA_BIT_MASK(32)); + if (r) { + dev_err(this->dev, "failed to set DMA mask\n"); + return r; + } + + /* + * we don't know the page size of the NAND chip yet, set the buffer size + * to 512 bytes for now, that's sufficient for reading ID or ONFI params + */ + this->buf_size = SZ_512; + + this->data_buffer = dma_alloc_coherent(this->dev, this->buf_size, + &this->data_buffer_paddr, GFP_KERNEL); + if (!this->data_buffer) + return -ENOMEM; + + this->regs = devm_kzalloc(this->dev, sizeof(struct nandc_regs), + GFP_KERNEL); + if (!this->regs) + return -ENOMEM; + + this->reg_read_buf = devm_kzalloc(this->dev, MAX_REG_RD * sizeof(u32), + GFP_KERNEL); + if (!this->reg_read_buf) + return -ENOMEM; + + INIT_LIST_HEAD(&this->list); + + this->chan = dma_request_slave_channel(this->dev, "rxtx"); + if (!this->chan) { + dev_err(this->dev, "failed to request slave channel\n"); + return -ENODEV; + } + + return 0; +} + +static void qcom_nandc_unalloc(struct qcom_nandc_data *this) +{ + dma_free_coherent(this->dev, this->buf_size, this->data_buffer, + this->data_buffer_paddr); + + dma_release_channel(this->chan); +} + +static int qcom_nandc_init(struct qcom_nandc_data *this) +{ + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->chip; + struct mtd_part_parser_data ppdata = {}; + int r; + + mtd->priv = chip; + mtd->name = "qcom-nandc"; + mtd->owner = THIS_MODULE; + + chip->priv = this; + + chip->cmdfunc = qcom_nandc_command; + chip->select_chip = qcom_nandc_select_chip; + chip->read_byte = qcom_nandc_read_byte; + chip->read_buf = qcom_nandc_read_buf; + chip->write_buf = qcom_nandc_write_buf; + chip->block_bad = qcom_nandc_block_bad; + chip->block_markbad = qcom_nandc_block_markbad; + + /* TODO: both can be supported, need to implement them */ + chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_SKIP_BBTSCAN; + + if (this->bus_width == 16) + chip->options |= NAND_BUSWIDTH_16; + + qcom_nandc_pre_init(this); + + r = nand_scan_ident(mtd, 1, NULL); + if (r) + return r; + + r = qcom_nandc_ecc_init(this); + if (r) + return r; + + r = nand_scan_tail(mtd); + if (r) + return r; + + qcom_nandc_hw_post_init(this); + + ppdata.of_node = this->dev->of_node; + r = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); + if (r) + return r; + + return 0; +} + +static int qcom_nandc_parse_dt(struct platform_device *pdev) +{ + struct device_node *np; + struct qcom_nandc_data *this; + int r; + + np = pdev->dev.of_node; + if (!np) + return -ENODEV; + + this = platform_get_drvdata(pdev); + if (!this) + return -ENODEV; + + this->ecc_strength = of_get_nand_ecc_strength(np); + if (this->ecc_strength < 0) { + dev_warn(this->dev, + "incorrect ecc strength, setting to 4 bits/step\n"); + this->ecc_strength = 4; + } + + this->bus_width = of_get_nand_bus_width(np); + if (this->bus_width < 0) { + dev_warn(this->dev, "incorrect bus width, setting to 8\n"); + this->bus_width = 8; + } + + r = of_property_read_u32(np, "qcom,cmd-crci", &this->cmd_crci); + if (r) { + dev_err(this->dev, "command CRCI unspecified\n"); + return r; + } + + r = of_property_read_u32(np, "qcom,data-crci", &this->data_crci); + if (r) { + dev_err(this->dev, "data CRCI unspecified\n"); + return r; + } + + return 0; +} + +#define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT) + +static const struct of_device_id qcom_nandc_of_match[] = { + { .compatible = "qcom,ebi2-nandc", + .data = (void *) EBI2_NANDC_ECC_MODES, + }, + {} +}; +MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); + +static int qcom_nandc_probe(struct platform_device *pdev) +{ + struct qcom_nandc_data *this; + const struct of_device_id *match; + int r; + + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); + if (!this) + return -ENOMEM; + + platform_set_drvdata(pdev, this); + + this->pdev = pdev; + this->dev = &pdev->dev; + + match = of_match_node(qcom_nandc_of_match, pdev->dev.of_node); + if (!match) { + dev_err(&pdev->dev, "unsupported NANDc module\n"); + return -ENODEV; + } + + /* match->data will hold a struct pointer once we support more IPs */ + this->ecc_modes = (u32) match->data; + + this->res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + this->base = devm_ioremap_resource(&pdev->dev, this->res); + if (IS_ERR(this->base)) + return PTR_ERR(this->base); + + this->core_clk = devm_clk_get(&pdev->dev, "core"); + if (IS_ERR(this->core_clk)) + return PTR_ERR(this->core_clk); + + this->aon_clk = devm_clk_get(&pdev->dev, "aon"); + if (IS_ERR(this->aon_clk)) + return PTR_ERR(this->aon_clk); + + r = qcom_nandc_parse_dt(pdev); + if (r) + return r; + + r = qcom_nandc_alloc(this); + if (r) + return r; + + r = clk_prepare_enable(this->core_clk); + if (r) + goto err_core_clk; + + r = clk_prepare_enable(this->aon_clk); + if (r) + goto err_aon_clk; + + r = qcom_nandc_init(this); + if (r) + goto err_init; + + return 0; + +err_init: + clk_disable_unprepare(this->aon_clk); +err_aon_clk: + clk_disable_unprepare(this->core_clk); +err_core_clk: + qcom_nandc_unalloc(this); + + return r; +} + +static int qcom_nandc_remove(struct platform_device *pdev) +{ + struct qcom_nandc_data *this; + + this = platform_get_drvdata(pdev); + if (!this) + return -ENODEV; + + qcom_nandc_unalloc(this); + + clk_disable_unprepare(this->aon_clk); + clk_disable_unprepare(this->core_clk); + + return 0; +} + +static struct platform_driver qcom_nandc_driver = { + .driver = { + .name = "qcom-nandc", + .of_match_table = qcom_nandc_of_match, + }, + .probe = qcom_nandc_probe, + .remove = qcom_nandc_remove, +}; +module_platform_driver(qcom_nandc_driver); + +MODULE_AUTHOR("Archit Taneja <architt@xxxxxxxxxxxxxx>"); +MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); +MODULE_LICENSE("GPL"); -- The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum, hosted by The Linux Foundation -- To unsubscribe from this list: send the line "unsubscribe linux-arm-msm" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html