ACPI 6.2 adds a new table, which describes how processing units
are related to each other in tree like fashion. Caches are
also sprinkled throughout the tree and describe the properties
of the caches in relation to other caches and processing units.
Add the code to parse the cache hierarchy and report the total
number of levels of cache for a given core using
acpi_find_last_cache_level() as well as fill out the individual
cores cache information with cache_setup_acpi() once the
cpu_cacheinfo structure has been populated by the arch specific
code.
Further, report peers in the topology using setup_acpi_cpu_topology()
to report a unique ID for each processing unit at a given level
in the tree. These unique id's can then be used to match related
processing units which exist as threads, COD (clusters
on die), within a given package, etc.
Signed-off-by: Jeremy Linton <jeremy.linton@xxxxxxx>
---
drivers/acpi/pptt.c | 485
++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 485 insertions(+)
create mode 100644 drivers/acpi/pptt.c
diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
new file mode 100644
index 000000000000..c86715fed4a7
--- /dev/null
+++ b/drivers/acpi/pptt.c
@@ -0,1 +1,485 @@
+/*
+ * Copyright (C) 2017, ARM
+ *
+ * This program is free software; you can redistribute it and/or
modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but
WITHOUT
+ * ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for
+ * more details.
+ *
+ * This file implements parsing of Processor Properties Topology
Table (PPTT)
+ * which is optionally used to describe the processor and cache
topology.
+ * Due to the relative pointers used throughout the table, this
doesn't
+ * leverage the existing subtable parsing in the kernel.
+ */
+#define pr_fmt(fmt) "ACPI PPTT: " fmt
+
+#include <linux/acpi.h>
+#include <linux/cacheinfo.h>
+#include <acpi/processor.h>
+
+/*
+ * Given the PPTT table, find and verify that the subtable entry
+ * is located within the table
+ */
+static struct acpi_subtable_header *fetch_pptt_subtable(
+ struct acpi_table_header *table_hdr, u32 pptt_ref)
+{
+ struct acpi_subtable_header *entry;
+
+ /* there isn't a subtable at reference 0 */
+ if (!pptt_ref)
+ return NULL;
+
+ if (pptt_ref + sizeof(struct acpi_subtable_header) >
table_hdr->length)
+ return NULL;
+
+ entry = (struct acpi_subtable_header *)((u8 *)table_hdr +
pptt_ref);
+
+ if (pptt_ref + entry->length > table_hdr->length)
+ return NULL;
+
+ return entry;
+}
+
+static struct acpi_pptt_processor *fetch_pptt_node(
+ struct acpi_table_header *table_hdr, u32 pptt_ref)
+{
+ return (struct acpi_pptt_processor
*)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_pptt_cache *fetch_pptt_cache(
+ struct acpi_table_header *table_hdr, u32 pptt_ref)
+{
+ return (struct acpi_pptt_cache
*)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_subtable_header *acpi_get_pptt_resource(
+ struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *node, int resource)
+{
+ u32 ref;
+
+ if (resource >= node->number_of_priv_resources)
+ return NULL;
+
+ ref = *(u32 *)((u8 *)node + sizeof(struct acpi_pptt_processor) +
+ sizeof(u32) * resource);
+
+ return fetch_pptt_subtable(table_hdr, ref);
+}
+
+/*
+ * given a pptt resource, verify that it is a cache node, then walk
+ * down each level of caches, counting how many levels are found
+ * as well as checking the cache type (icache, dcache, unified). If a
+ * level & type match, then we set found, and continue the search.
+ * Once the entire cache branch has been walked return its max
+ * depth.
+ */
+static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
+ int local_level,
+ struct acpi_subtable_header *res,
+ struct acpi_pptt_cache **found,
+ int level, int type)
+{
+ struct acpi_pptt_cache *cache;
+
+ if (res->type != ACPI_PPTT_TYPE_CACHE)
+ return 0;
+
+ cache = (struct acpi_pptt_cache *) res;
+ while (cache) {
+ local_level++;
+
+ if ((local_level == level) &&
+ (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) &&
+ ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) ==
type)) {