From: Kevin Rogovin <kevin.rogovin@xxxxxxxxx> Add a narration to i915.rst about Intel GEN GPU's: engines, driver context and relocation. Signed-off-by: Kevin Rogovin <kevin.rogovin@xxxxxxxxx> --- Documentation/gpu/i915.rst | 116 ++++++++++++++++++++++++++++++++-------- drivers/gpu/drm/i915/i915_vma.h | 10 ++-- 2 files changed, 100 insertions(+), 26 deletions(-) diff --git a/Documentation/gpu/i915.rst b/Documentation/gpu/i915.rst index 41dc881b00dc..00f897f67f85 100644 --- a/Documentation/gpu/i915.rst +++ b/Documentation/gpu/i915.rst @@ -249,6 +249,99 @@ Memory Management and Command Submission This sections covers all things related to the GEM implementation in the i915 driver. +Intel GPU Basics +---------------- + +An Intel GPU has multiple engines. There are several engine types. + +- RCS engine is for rendering 3D and performing compute, this is named `I915_EXEC_RENDER` in user space. +- BCS is a blitting (copy) engine, this is named `I915_EXEC_BLT` in user space. +- VCS is a video encode and decode engine, this is named `I915_EXEC_BSD` in user space +- VECS is video enhancement engine, this is named `I915_EXEC_VEBOX` in user space. +- The enumeration `I915_EXEC_DEFAULT` does not refer to specific engine; instead it is to be used by user space to specify a default rendering engine (for 3D) that may or may not be the same as RCS. + +The Intel GPU family is a family of integrated GPU's using Unified +Memory Access. For having the GPU "do work", user space will feed the +GPU batch buffers via one of the ioctls `DRM_IOCTL_I915_GEM_EXECBUFFER2` +or `DRM_IOCTL_I915_GEM_EXECBUFFER2_WR`. Most such batchbuffers will +instruct the GPU to perform work (for example rendering) and that work +needs memory from which to read and memory to which to write. All memory +is encapsulated within GEM buffer objects (usually created with the ioctl +`DRM_IOCTL_I915_GEM_CREATE`). An ioctl providing a batchbuffer for the GPU +to create will also list all GEM buffer objects that the batchbuffer reads +and/or writes. For implementation details of memory management see +`GEM BO Management Implementation Details`_. + +The i915 driver allows user space to create a context via the ioctl +`DRM_IOCTL_I915_GEM_CONTEXT_CREATE` which is identified by a 32-bit +integer. Such a context should be veiwed by user-space as -loosely- +analogous to the idea of a CPU process of an operating system. The i915 +driver guarantees that commands issued to a fixed context are to be +executed so that writes of a previously issued command are seen by +reads of following commands. Actions issued between different contexts +(even if from the same file descriptor) are NOT given that guarantee +and the only way to synchornize across contexts (even from the same +file descriptor) is through the use of fences. At least as far back as +Gen4, also have that a context carries with it a GPU HW context; +the HW context is essentially (most of atleast) the state of a GPU. +In addition to the ordering gaurantees, the kernel will restore GPU +state via HW context when commands are issued to a context, this saves +user space the need to restore (most of atleast) the GPU state at the +start of each batchbuffer. The ioctl `DRM_IOCTL_I915_GEM_CONTEXT_CREATE` +is used by user space to create a hardware context which is identified +by a 32-bit integer. The non-deprecated ioctls to submit batchbuffer +work can pass that ID (in the lower bits of drm_i915_gem_execbuffer2::rsvd1) +to identify what context to use with the command. + +The GPU has its own memory management and address space. The kernel +driver maintains the memory translation table for the GPU. For older +GPUs (i.e. those before Gen8), there is a single global such translation +table, a global Graphics Translation Table (GTT). For newer generation +GPUs each context has its own translation table, called Per-Process +Graphics Translation Table (PPGTT). Of important note, is that although +PPGTT is named per-process it is actually per context. When user space +submits a batchbuffer, the kernel walks the list of GEM buffer objects +used by the batchbuffer and guarantees that not only is the memory of +each such GEM buffer object resident but it is also present in the +(PP)GTT. If the GEM buffer object is not yet placed in the (PP)GTT, +then it is given an address. Two consequences of this are: the kernel +needs to edit the batchbuffer submitted to write the correct value of +the GPU address when a GEM BO is assigned a GPU address and the kernel +might evict a different GEM BO from the (PP)GTT to make address room +for another GEM BO. Consequently, the ioctls submitting a batchbuffer +for execution also include a list of all locations within buffers that +refer to GPU-addresses so that the kernel can edit the buffer correctly. +This process is dubbed relocation. + +GEM BO Management Implementation Details +---------------------------------------- + +.. kernel-doc:: drivers/gpu/drm/i915/i915_vma.h + :doc: Virtual Memory Address + +Buffer Object Eviction +---------------------- + +This section documents the interface functions for evicting buffer +objects to make space available in the virtual gpu address spaces. Note +that this is mostly orthogonal to shrinking buffer objects caches, which +has the goal to make main memory (shared with the gpu through the +unified memory architecture) available. + +.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_evict.c + :internal: + +Buffer Object Memory Shrinking +------------------------------ + +This section documents the interface function for shrinking memory usage +of buffer object caches. Shrinking is used to make main memory +available. Note that this is mostly orthogonal to evicting buffer +objects, which has the goal to make space in gpu virtual address spaces. + +.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_shrinker.c + :internal: + Batchbuffer Parsing ------------------- @@ -312,29 +405,6 @@ Object Tiling IOCTLs .. kernel-doc:: drivers/gpu/drm/i915/i915_gem_tiling.c :doc: buffer object tiling -Buffer Object Eviction ----------------------- - -This section documents the interface functions for evicting buffer -objects to make space available in the virtual gpu address spaces. Note -that this is mostly orthogonal to shrinking buffer objects caches, which -has the goal to make main memory (shared with the gpu through the -unified memory architecture) available. - -.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_evict.c - :internal: - -Buffer Object Memory Shrinking ------------------------------- - -This section documents the interface function for shrinking memory usage -of buffer object caches. Shrinking is used to make main memory -available. Note that this is mostly orthogonal to evicting buffer -objects, which has the goal to make space in gpu virtual address spaces. - -.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_shrinker.c - :internal: - GuC === diff --git a/drivers/gpu/drm/i915/i915_vma.h b/drivers/gpu/drm/i915/i915_vma.h index 8c5022095418..0000f23a7266 100644 --- a/drivers/gpu/drm/i915/i915_vma.h +++ b/drivers/gpu/drm/i915/i915_vma.h @@ -38,9 +38,13 @@ enum i915_cache_level; /** - * A VMA represents a GEM BO that is bound into an address space. Therefore, a - * VMA's presence cannot be guaranteed before binding, or after unbinding the - * object into/from the address space. + * DOC: Virtual Memory Address + * + * An `i915_vma` struct represents a GEM BO that is bound into an address + * space. Therefore, a VMA's presence cannot be guaranteed before binding, or + * after unbinding the object into/from the address space. The struct includes + * the bookkepping details needed for tracking it in all the lists with which + * it interacts. * * To make things as simple as possible (ie. no refcounting), a VMA's lifetime * will always be <= an objects lifetime. So object refcounting should cover us. -- 2.16.2 _______________________________________________ Intel-gfx mailing list Intel-gfx@xxxxxxxxxxxxxxxxxxxxx https://lists.freedesktop.org/mailman/listinfo/intel-gfx