From: Sarath Babu Naidu Gaddam <sarath.babu.naidu.gaddam@xxxxxxx> The axiethernet driver has inbuilt dma programming. In order to add dmaengine support and make it's integration seamless the current axidma inbuilt programming code is put under use_dmaengine check. It also performs minor code reordering to minimize conditional use_dmaengine checks and there is no functional change. It uses "dmas" property to identify whether it should use a dmaengine framework or inbuilt axidma programming. Signed-off-by: Sarath Babu Naidu Gaddam <sarath.babu.naidu.gaddam@xxxxxxx> Signed-off-by: Radhey Shyam Pandey <radhey.shyam.pandey@xxxxxxx> --- Changes for v5: - Fix git apply failure due to commit f1bc9fc4a06de0108e0dca2a9a7e99ba1fc632f9 Changes for v4: - Renamed has_dmas to use_dmaegine. - Removed the AXIENET_USE_DMA. - Changed the start_xmit_** functions description. Changes for v3: - New patch --- drivers/net/ethernet/xilinx/xilinx_axienet.h | 2 + .../net/ethernet/xilinx/xilinx_axienet_main.c | 313 +++++++++++------- 2 files changed, 188 insertions(+), 127 deletions(-) diff --git a/drivers/net/ethernet/xilinx/xilinx_axienet.h b/drivers/net/ethernet/xilinx/xilinx_axienet.h index 575ff9de8985..3ead0bac597b 100644 --- a/drivers/net/ethernet/xilinx/xilinx_axienet.h +++ b/drivers/net/ethernet/xilinx/xilinx_axienet.h @@ -435,6 +435,7 @@ struct axidma_bd { * @coalesce_usec_rx: IRQ coalesce delay for RX * @coalesce_count_tx: Store the irq coalesce on TX side. * @coalesce_usec_tx: IRQ coalesce delay for TX + * @use_dmaengine: flag to check dmaengine framework usage. */ struct axienet_local { struct net_device *ndev; @@ -499,6 +500,7 @@ struct axienet_local { u32 coalesce_usec_rx; u32 coalesce_count_tx; u32 coalesce_usec_tx; + u8 use_dmaengine; }; /** diff --git a/drivers/net/ethernet/xilinx/xilinx_axienet_main.c b/drivers/net/ethernet/xilinx/xilinx_axienet_main.c index 8e32dc50a408..36c77248a55e 100644 --- a/drivers/net/ethernet/xilinx/xilinx_axienet_main.c +++ b/drivers/net/ethernet/xilinx/xilinx_axienet_main.c @@ -588,10 +588,6 @@ static int axienet_device_reset(struct net_device *ndev) struct axienet_local *lp = netdev_priv(ndev); int ret; - ret = __axienet_device_reset(lp); - if (ret) - return ret; - lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; lp->options |= XAE_OPTION_VLAN; lp->options &= (~XAE_OPTION_JUMBO); @@ -605,11 +601,17 @@ static int axienet_device_reset(struct net_device *ndev) lp->options |= XAE_OPTION_JUMBO; } - ret = axienet_dma_bd_init(ndev); - if (ret) { - netdev_err(ndev, "%s: descriptor allocation failed\n", - __func__); - return ret; + if (!lp->use_dmaengine) { + ret = __axienet_device_reset(lp); + if (ret) + return ret; + + ret = axienet_dma_bd_init(ndev); + if (ret) { + netdev_err(ndev, "%s: descriptor allocation failed\n", + __func__); + return ret; + } } axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); @@ -775,20 +777,20 @@ static int axienet_tx_poll(struct napi_struct *napi, int budget) } /** - * axienet_start_xmit - Starts the transmission. + * axienet_start_xmit_legacy - Starts the transmission. * @skb: sk_buff pointer that contains data to be Txed. * @ndev: Pointer to net_device structure. * * Return: NETDEV_TX_OK, on success * NETDEV_TX_BUSY, if any of the descriptors are not free * - * This function is invoked from upper layers to initiate transmission. The + * This function is invoked from axienet_start_xmit to initiate transmission. The * function uses the next available free BDs and populates their fields to * start the transmission. Additionally if checksum offloading is supported, * it populates AXI Stream Control fields with appropriate values. */ static netdev_tx_t -axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) +axienet_start_xmit_legacy(struct sk_buff *skb, struct net_device *ndev) { u32 ii; u32 num_frag; @@ -890,6 +892,27 @@ axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) return NETDEV_TX_OK; } +/** + * axienet_start_xmit - Invoke the transmission function + * @skb: sk_buff pointer that contains data to be Txed. + * @ndev: Pointer to net_device structure. + * + * Return: NETDEV_TX_OK, on success + * NETDEV_TX_BUSY, if any of the descriptors are not free + * + * This function is invoked from upper layers to initiate transmission + */ +static netdev_tx_t +axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) +{ + struct axienet_local *lp = netdev_priv(ndev); + + if (!lp->use_dmaengine) + return axienet_start_xmit_legacy(skb, ndev); + else + return NETDEV_TX_BUSY; +} + /** * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. * @napi: Pointer to NAPI structure. @@ -1124,41 +1147,22 @@ static irqreturn_t axienet_eth_irq(int irq, void *_ndev) static void axienet_dma_err_handler(struct work_struct *work); /** - * axienet_open - Driver open routine. - * @ndev: Pointer to net_device structure + * axienet_init_legacy_dma - init the dma legacy code. + * @ndev: Pointer to net_device structure * * Return: 0, on success. - * non-zero error value on failure + * non-zero error value on failure + * + * This is the dma initialization code. It also allocates interrupt + * service routines, enables the interrupt lines and ISR handling. * - * This is the driver open routine. It calls phylink_start to start the - * PHY device. - * It also allocates interrupt service routines, enables the interrupt lines - * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer - * descriptors are initialized. */ -static int axienet_open(struct net_device *ndev) + +static inline int axienet_init_legacy_dma(struct net_device *ndev) { int ret; struct axienet_local *lp = netdev_priv(ndev); - dev_dbg(&ndev->dev, "axienet_open()\n"); - - /* When we do an Axi Ethernet reset, it resets the complete core - * including the MDIO. MDIO must be disabled before resetting. - * Hold MDIO bus lock to avoid MDIO accesses during the reset. - */ - axienet_lock_mii(lp); - ret = axienet_device_reset(ndev); - axienet_unlock_mii(lp); - - ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); - if (ret) { - dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); - return ret; - } - - phylink_start(lp->phylink); - /* Enable worker thread for Axi DMA error handling */ INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); @@ -1192,13 +1196,62 @@ static int axienet_open(struct net_device *ndev) err_tx_irq: napi_disable(&lp->napi_tx); napi_disable(&lp->napi_rx); - phylink_stop(lp->phylink); - phylink_disconnect_phy(lp->phylink); cancel_work_sync(&lp->dma_err_task); dev_err(lp->dev, "request_irq() failed\n"); return ret; } +/** + * axienet_open - Driver open routine. + * @ndev: Pointer to net_device structure + * + * Return: 0, on success. + * non-zero error value on failure + * + * This is the driver open routine. It calls phylink_start to start the + * PHY device. + * It also allocates interrupt service routines, enables the interrupt lines + * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer + * descriptors are initialized. + */ +static int axienet_open(struct net_device *ndev) +{ + int ret; + struct axienet_local *lp = netdev_priv(ndev); + + dev_dbg(&ndev->dev, "%s\n", __func__); + + /* When we do an Axi Ethernet reset, it resets the complete core + * including the MDIO. MDIO must be disabled before resetting. + * Hold MDIO bus lock to avoid MDIO accesses during the reset. + */ + axienet_lock_mii(lp); + ret = axienet_device_reset(ndev); + axienet_unlock_mii(lp); + + ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); + if (ret) { + dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); + return ret; + } + + phylink_start(lp->phylink); + + if (!lp->use_dmaengine) { + ret = axienet_init_legacy_dma(ndev); + if (ret) + goto error_code; + } + + return 0; + +error_code: + phylink_stop(lp->phylink); + phylink_disconnect_phy(lp->phylink); + + return ret; +} + /** * axienet_stop - Driver stop routine. * @ndev: Pointer to net_device structure @@ -1215,8 +1268,10 @@ static int axienet_stop(struct net_device *ndev) dev_dbg(&ndev->dev, "axienet_close()\n"); - napi_disable(&lp->napi_tx); - napi_disable(&lp->napi_rx); + if (!lp->use_dmaengine) { + napi_disable(&lp->napi_tx); + napi_disable(&lp->napi_rx); + } phylink_stop(lp->phylink); phylink_disconnect_phy(lp->phylink); @@ -1224,18 +1279,18 @@ static int axienet_stop(struct net_device *ndev) axienet_setoptions(ndev, lp->options & ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); - axienet_dma_stop(lp); + if (!lp->use_dmaengine) { + axienet_dma_stop(lp); + cancel_work_sync(&lp->dma_err_task); + free_irq(lp->tx_irq, ndev); + free_irq(lp->rx_irq, ndev); + axienet_dma_bd_release(ndev); + } axienet_iow(lp, XAE_IE_OFFSET, 0); - cancel_work_sync(&lp->dma_err_task); - if (lp->eth_irq > 0) free_irq(lp->eth_irq, ndev); - free_irq(lp->tx_irq, ndev); - free_irq(lp->rx_irq, ndev); - - axienet_dma_bd_release(ndev); return 0; } @@ -1411,14 +1466,16 @@ static void axienet_ethtools_get_regs(struct net_device *ndev, data[29] = axienet_ior(lp, XAE_FMI_OFFSET); data[30] = axienet_ior(lp, XAE_AF0_OFFSET); data[31] = axienet_ior(lp, XAE_AF1_OFFSET); - data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); - data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); - data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); - data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); - data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); - data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); - data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); - data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); + if (!lp->use_dmaengine) { + data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); + data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); + data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); + data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); + data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); + data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); + data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); + data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); + } } static void @@ -1879,9 +1936,6 @@ static int axienet_probe(struct platform_device *pdev) u64_stats_init(&lp->rx_stat_sync); u64_stats_init(&lp->tx_stat_sync); - netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); - netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); - lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); if (!lp->axi_clk) { /* For backward compatibility, if named AXI clock is not present, @@ -2007,80 +2061,85 @@ static int axienet_probe(struct platform_device *pdev) goto cleanup_clk; } - /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ - np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); - if (np) { - struct resource dmares; + if (!of_find_property(pdev->dev.of_node, "dmas", NULL)) { + /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ + np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); - ret = of_address_to_resource(np, 0, &dmares); - if (ret) { - dev_err(&pdev->dev, - "unable to get DMA resource\n"); + if (np) { + struct resource dmares; + + ret = of_address_to_resource(np, 0, &dmares); + if (ret) { + dev_err(&pdev->dev, + "unable to get DMA resource\n"); + of_node_put(np); + goto cleanup_clk; + } + lp->dma_regs = devm_ioremap_resource(&pdev->dev, + &dmares); + lp->rx_irq = irq_of_parse_and_map(np, 1); + lp->tx_irq = irq_of_parse_and_map(np, 0); of_node_put(np); + lp->eth_irq = platform_get_irq_optional(pdev, 0); + } else { + /* Check for these resources directly on the Ethernet node. */ + lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); + lp->rx_irq = platform_get_irq(pdev, 1); + lp->tx_irq = platform_get_irq(pdev, 0); + lp->eth_irq = platform_get_irq_optional(pdev, 2); + } + if (IS_ERR(lp->dma_regs)) { + dev_err(&pdev->dev, "could not map DMA regs\n"); + ret = PTR_ERR(lp->dma_regs); + goto cleanup_clk; + } + if (lp->rx_irq <= 0 || lp->tx_irq <= 0) { + dev_err(&pdev->dev, "could not determine irqs\n"); + ret = -ENOMEM; goto cleanup_clk; } - lp->dma_regs = devm_ioremap_resource(&pdev->dev, - &dmares); - lp->rx_irq = irq_of_parse_and_map(np, 1); - lp->tx_irq = irq_of_parse_and_map(np, 0); - of_node_put(np); - lp->eth_irq = platform_get_irq_optional(pdev, 0); - } else { - /* Check for these resources directly on the Ethernet node. */ - lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); - lp->rx_irq = platform_get_irq(pdev, 1); - lp->tx_irq = platform_get_irq(pdev, 0); - lp->eth_irq = platform_get_irq_optional(pdev, 2); - } - if (IS_ERR(lp->dma_regs)) { - dev_err(&pdev->dev, "could not map DMA regs\n"); - ret = PTR_ERR(lp->dma_regs); - goto cleanup_clk; - } - if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) { - dev_err(&pdev->dev, "could not determine irqs\n"); - ret = -ENOMEM; - goto cleanup_clk; - } - /* Reset core now that clocks are enabled, prior to accessing MDIO */ - ret = __axienet_device_reset(lp); - if (ret) - goto cleanup_clk; + /* Reset core now that clocks are enabled, prior to accessing MDIO */ + ret = __axienet_device_reset(lp); + if (ret) + goto cleanup_clk; + + /* Autodetect the need for 64-bit DMA pointers. + * When the IP is configured for a bus width bigger than 32 bits, + * writing the MSB registers is mandatory, even if they are all 0. + * We can detect this case by writing all 1's to one such register + * and see if that sticks: when the IP is configured for 32 bits + * only, those registers are RES0. + * Those MSB registers were introduced in IP v7.1, which we check first. + */ + if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { + void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; - /* Autodetect the need for 64-bit DMA pointers. - * When the IP is configured for a bus width bigger than 32 bits, - * writing the MSB registers is mandatory, even if they are all 0. - * We can detect this case by writing all 1's to one such register - * and see if that sticks: when the IP is configured for 32 bits - * only, those registers are RES0. - * Those MSB registers were introduced in IP v7.1, which we check first. - */ - if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { - void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; - - iowrite32(0x0, desc); - if (ioread32(desc) == 0) { /* sanity check */ - iowrite32(0xffffffff, desc); - if (ioread32(desc) > 0) { - lp->features |= XAE_FEATURE_DMA_64BIT; - addr_width = 64; - dev_info(&pdev->dev, - "autodetected 64-bit DMA range\n"); - } iowrite32(0x0, desc); + if (ioread32(desc) == 0) { /* sanity check */ + iowrite32(0xffffffff, desc); + if (ioread32(desc) > 0) { + lp->features |= XAE_FEATURE_DMA_64BIT; + addr_width = 64; + dev_info(&pdev->dev, + "autodetected 64-bit DMA range\n"); + } + iowrite32(0x0, desc); + } + } + if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { + dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); + ret = -EINVAL; + goto cleanup_clk; } - } - if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { - dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); - ret = -EINVAL; - goto cleanup_clk; - } - ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); - if (ret) { - dev_err(&pdev->dev, "No suitable DMA available\n"); - goto cleanup_clk; + ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); + if (ret) { + dev_err(&pdev->dev, "No suitable DMA available\n"); + goto cleanup_clk; + } + netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); + netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); } /* Check for Ethernet core IRQ (optional) */ @@ -2098,8 +2157,8 @@ static int axienet_probe(struct platform_device *pdev) } lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; - lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; + lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC; ret = axienet_mdio_setup(lp); -- 2.34.1