On Wed, 15 Mar 2023, Jacky Huang wrote: > From: Jacky Huang <ychuang3@xxxxxxxxxxx> > > The clock controller generates clocks for the whole chip, including > system clocks and all peripheral clocks. This driver support ma35d1 > clock gating, divider, and individual PLL configuration. > > There are 6 PLLs in ma35d1 SoC: > - CA-PLL for the two Cortex-A35 CPU clock > - SYS-PLL for system bus, which comes from the companion MCU > and cannot be programmed by clock controller. > - DDR-PLL for DDR > - EPLL for GMAC and GFX, Display, and VDEC IPs. > - VPLL for video output pixel clock > - APLL for SDHC, I2S audio, and other IPs. > CA-PLL has only one operation mode. > DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3 > operation modes: integer mode, fraction mode, and spread specturm mode. > > Signed-off-by: Jacky Huang <ychuang3@xxxxxxxxxxx> > --- > drivers/clk/Makefile | 1 + > drivers/clk/nuvoton/Makefile | 4 + > drivers/clk/nuvoton/clk-ma35d1-divider.c | 144 ++++ > drivers/clk/nuvoton/clk-ma35d1-pll.c | 534 +++++++++++++ > drivers/clk/nuvoton/clk-ma35d1.c | 970 +++++++++++++++++++++++ > drivers/clk/nuvoton/clk-ma35d1.h | 198 +++++ > 6 files changed, 1851 insertions(+) > create mode 100644 drivers/clk/nuvoton/Makefile > create mode 100644 drivers/clk/nuvoton/clk-ma35d1-divider.c > create mode 100644 drivers/clk/nuvoton/clk-ma35d1-pll.c > create mode 100644 drivers/clk/nuvoton/clk-ma35d1.c > create mode 100644 drivers/clk/nuvoton/clk-ma35d1.h > > diff --git a/drivers/clk/Makefile b/drivers/clk/Makefile > index e3ca0d058a25..2e7916d269e1 100644 > --- a/drivers/clk/Makefile > +++ b/drivers/clk/Makefile > @@ -103,6 +103,7 @@ endif > obj-y += mstar/ > obj-y += mvebu/ > obj-$(CONFIG_ARCH_MXS) += mxs/ > +obj-$(CONFIG_ARCH_NUVOTON) += nuvoton/ > obj-$(CONFIG_COMMON_CLK_NXP) += nxp/ > obj-$(CONFIG_COMMON_CLK_PISTACHIO) += pistachio/ > obj-$(CONFIG_COMMON_CLK_PXA) += pxa/ > diff --git a/drivers/clk/nuvoton/Makefile b/drivers/clk/nuvoton/Makefile > new file mode 100644 > index 000000000000..d2c092541b8d > --- /dev/null > +++ b/drivers/clk/nuvoton/Makefile > @@ -0,0 +1,4 @@ > +# SPDX-License-Identifier: GPL-2.0-only > +obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1.o > +obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1-divider.o > +obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1-pll.o > diff --git a/drivers/clk/nuvoton/clk-ma35d1-divider.c b/drivers/clk/nuvoton/clk-ma35d1-divider.c > new file mode 100644 > index 000000000000..5f4791531e47 > --- /dev/null > +++ b/drivers/clk/nuvoton/clk-ma35d1-divider.c > @@ -0,0 +1,144 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (C) 2023 Nuvoton Technology Corp. > + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx> > + */ > + > +#include <linux/clk-provider.h> > +#include <linux/slab.h> > +#include <linux/io.h> > +#include <linux/err.h> > +#include <linux/spinlock.h> > + > +#include "clk-ma35d1.h" > + > +#define div_mask(width) ((1 << (width)) - 1) > + > +struct ma35d1_adc_clk_divider { > + struct clk_hw hw; > + void __iomem *reg; > + u8 shift; > + u8 width; > + u32 mask; > + const struct clk_div_table *table; > + spinlock_t *lock; Add comment to indicate what it protects. > +}; > + > +#define to_ma35d1_adc_clk_divider(_hw) \ > + container_of(_hw, struct ma35d1_adc_clk_divider, hw) static inline > +static unsigned long ma35d1_clkdiv_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + unsigned int val; > + struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw); > + > + val = readl_relaxed(dclk->reg) >> dclk->shift; > + val &= div_mask(dclk->width); > + val += 1; > + return divider_recalc_rate(hw, parent_rate, val, dclk->table, > + CLK_DIVIDER_ROUND_CLOSEST, dclk->width); > +} > + > +static long ma35d1_clkdiv_round_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long *prate) > +{ > + struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw); > + > + return divider_round_rate(hw, rate, prate, dclk->table, > + dclk->width, CLK_DIVIDER_ROUND_CLOSEST); > +} > + > +static int ma35d1_clkdiv_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + int value; > + unsigned long flags = 0; > + u32 data; > + struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw); > + > + value = divider_get_val(rate, parent_rate, dclk->table, > + dclk->width, CLK_DIVIDER_ROUND_CLOSEST); > + > + if (dclk->lock) > + spin_lock_irqsave(dclk->lock, flags); > + > + data = readl_relaxed(dclk->reg); > + data &= ~(div_mask(dclk->width) << dclk->shift); > + data |= (value - 1) << dclk->shift; > + data |= dclk->mask; > + > + writel_relaxed(data, dclk->reg); > + > + if (dclk->lock) > + spin_unlock_irqrestore(dclk->lock, flags); > + > + return 0; > +} > + > +static const struct clk_ops ma35d1_adc_clkdiv_ops = { > + .recalc_rate = ma35d1_clkdiv_recalc_rate, > + .round_rate = ma35d1_clkdiv_round_rate, > + .set_rate = ma35d1_clkdiv_set_rate, > +}; > + > +struct clk_hw *ma35d1_reg_adc_clkdiv(struct device *dev, const char *name, > + const char *parent_name, > + unsigned long flags, void __iomem *reg, > + u8 shift, u8 width, u32 mask_bit) > +{ > + struct ma35d1_adc_clk_divider *div; > + struct clk_init_data init; > + struct clk_div_table *table; > + u32 max_div, min_div; > + struct clk_hw *hw; > + int ret; > + int i; > + > + /* allocate the divider */ > + div = kzalloc(sizeof(*div), GFP_KERNEL); > + if (!div) > + return ERR_PTR(-ENOMEM); > + > + /* Init the divider table */ > + max_div = div_mask(width) + 1; > + min_div = 1; > + > + table = kcalloc(max_div + 1, sizeof(*table), GFP_KERNEL); > + if (!table) { > + kfree(div); > + return ERR_PTR(-ENOMEM); Use rollback to do error handling: ret = ERR_PTR(-ENOMEM); goto free_div; > + } > + > + for (i = 0; i < max_div; i++) { > + table[i].val = (min_div + i); > + table[i].div = 2 * table[i].val; > + } > + table[max_div].val = 0; > + table[max_div].div = 0; > + > + init.name = name; > + init.ops = &ma35d1_adc_clkdiv_ops; > + init.flags |= flags; > + init.parent_names = parent_name ? &parent_name : NULL; > + init.num_parents = parent_name ? 1 : 0; > + > + /* struct ma35d1_adc_clk_divider assignments */ > + div->reg = reg; > + div->shift = shift; > + div->width = width; > + div->mask = mask_bit ? BIT(mask_bit) : 0; > + div->lock = &ma35d1_lock; > + div->hw.init = &init; > + div->table = table; > + > + /* Register the clock */ > + hw = &div->hw; > + ret = clk_hw_register(NULL, hw); > + if (ret) { > + kfree(table); > + kfree(div); > + return ERR_PTR(ret); ret = ERR_PTR(ret); goto free_table; > + } > + return hw; free_table: kfree(table); free_div: kfree(div); return ret; > +} > diff --git a/drivers/clk/nuvoton/clk-ma35d1-pll.c b/drivers/clk/nuvoton/clk-ma35d1-pll.c > new file mode 100644 > index 000000000000..79e724b148fa > --- /dev/null > +++ b/drivers/clk/nuvoton/clk-ma35d1-pll.c > @@ -0,0 +1,534 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (C) 2023 Nuvoton Technology Corp. > + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx> > + */ > + > +#include <linux/clk.h> > +#include <linux/clk-provider.h> > +#include <linux/io.h> > +#include <linux/slab.h> > +#include <linux/bitfield.h> > + > +#include "clk-ma35d1.h" > + > +#define to_ma35d1_clk_pll(clk) \ > + (container_of(clk, struct ma35d1_clk_pll, clk)) static inline > + > +#define PLL0CTL0_FBDIV_MSK GENMASK(7, 0) > +#define PLL0CTL0_INDIV_MSK GENMASK(11, 8) > +#define PLL0CTL0_OUTDIV_MSK GENMASK(13, 12) > +#define PLL0CTL0_PD_MSK BIT(16) > +#define PLL0CTL0_BP_MSK BIT(17) > +#define PLLXCTL0_FBDIV_MSK GENMASK(10, 0) > +#define PLLXCTL0_INDIV_MSK GENMASK(17, 12) > +#define PLLXCTL0_MODE_MSK GENMASK(19, 18) > +#define PLLXCTL0_SSRATE_MSK GENMASK(30, 20) > +#define PLLXCTL1_PD_MSK BIT(0) > +#define PLLXCTL1_BP_MSK BIT(1) > +#define PLLXCTL1_OUTDIV_MSK GENMASK(6, 4) > +#define PLLXCTL1_FRAC_MSK GENMASK(31, 8) > +#define PLLXCTL2_SLOPE_MSK GENMASK(23, 0) > + > +struct ma35d1_clk_pll { > + struct clk_hw hw; > + u8 type; > + u8 mode; > + unsigned long rate; > + void __iomem *ctl0_base; > + void __iomem *ctl1_base; > + void __iomem *ctl2_base; > + struct regmap *regmap; > +}; > + > +struct vsipll_freq_conf_reg_tbl { > + unsigned long freq; > + u8 mode; > + u32 ctl0_reg; > + u32 ctl1_reg; > + u32 ctl2_reg; > +}; > + > +static const struct vsipll_freq_conf_reg_tbl ma35d1pll_freq[] = { > + { 1000000000, VSIPLL_INTEGER_MODE, 0x307d, 0x10, 0 }, > + { 884736000, VSIPLL_FRACTIONAL_MODE, 0x41024, 0xdd2f1b11, 0 }, > + { 533000000, VSIPLL_SS_MODE, 0x12b8102c, 0x6aaaab20, 0x12317 }, > + { } > +}; > + > +static void CLK_UnLockReg(struct ma35d1_clk_pll *pll) Use lowercase only. > +{ > + int ret; > + > + /* Unlock PLL registers */ > + do { > + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x59); > + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x16); > + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x88); > + regmap_read(pll->regmap, REG_SYS_RLKTZNS, &ret); > + } while (ret == 0); > +} > + > +static void CLK_LockReg(struct ma35d1_clk_pll *pll) Ditto. > +{ > + /* Lock PLL registers */ > + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x0); > +} > + > +/* SMIC PLL for CAPLL */ > +unsigned long CLK_GetPLLFreq_SMICPLL(struct ma35d1_clk_pll *pll, > + unsigned long PllSrcClk) Lowercase only for function name and variable names. Please do the rest, I won't mention more of them. > +{ > + u32 u32M, u32N, u32P, u32OutDiv; > + u32 val; > + unsigned long u64PllClk; > + u32 clk_div_table[] = { 1, 2, 4, 8}; Inconsistent whitespaces. > + > + val = __raw_readl(pll->ctl0_base); > + > + u32N = FIELD_GET(PLL0CTL0_FBDIV_MSK, val); > + u32M = FIELD_GET(PLL0CTL0_INDIV_MSK, val); > + u32P = FIELD_GET(PLL0CTL0_OUTDIV_MSK, val); > + u32OutDiv = clk_div_table[u32P]; > + > + if (val & PLL0CTL0_BP_MSK) { > + u64PllClk = PllSrcClk; > + } else { > + u64PllClk = PllSrcClk * u32N; > + do_div(u64PllClk, u32M * u32OutDiv); Does this block depend on unsigned long being 64-bit? Or should you enforce it by using u64 that is always same sized unlike unsigned long? > + } > + return u64PllClk; > +} > + > +/* VSI-PLL: INTEGER_MODE */ > +unsigned long CLK_CalPLLFreq_Mode0(unsigned long PllSrcClk, > + unsigned long u64PllFreq, u32 *u32Reg) > +{ > + u32 u32TmpM, u32TmpN, u32TmpP; > + u32 u32RngMinN, u32RngMinM, u32RngMinP; > + u32 u32RngMaxN, u32RngMaxM, u32RngMaxP; > + u32 u32Tmp, u32Min, u32MinN, u32MinM, u32MinP; Remove types from names. > + unsigned long u64PllClk; > + unsigned long u64Con1, u64Con2, u64Con3; Okay as unsigned long or do you want always 64-bit which is u64 ? Define these inside the loops below and remove the types from the name. > + > + u64PllClk = 0; > + u32Min = (u32) -1; > + > + if (!((u64PllFreq >= VSIPLL_FCLKO_MIN_FREQ) && > + (u64PllFreq <= VSIPLL_FCLKO_MAX_FREQ))) { > + u32Reg[0] = ma35d1pll_freq[0].ctl0_reg; > + u32Reg[1] = ma35d1pll_freq[0].ctl1_reg; > + u64PllClk = ma35d1pll_freq[0].freq; > + return u64PllClk; > + } > + > + u32RngMinM = 1UL; > + u32RngMaxM = 63UL; > + u32RngMinM = ((PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) > 1) ? > + (PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) : 1; max(PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ, 1UL); Remember to add include for it. > + u32RngMaxM = ((PllSrcClk / VSIPLL_FREFDIVM_MIN_FREQ0) < u32RngMaxM) ? > + (PllSrcClk / VSIPLL_FREFDIVM_MIN_FREQ0) : u32RngMaxM; min(); > + > + for (u32TmpM = u32RngMinM; u32TmpM < (u32RngMaxM + 1); u32TmpM++) { <= and remove + 1 Why can't you call this loop cariable just m ? > + u64Con1 = PllSrcClk / u32TmpM; > + u32RngMinN = 16UL; > + u32RngMaxN = 2047UL; Why aren't these two values in defines? > + u32RngMinN = ((VSIPLL_FCLK_MIN_FREQ / u64Con1) > u32RngMinN) ? > + (VSIPLL_FCLK_MIN_FREQ / u64Con1) : u32RngMinN; max(); > + u32RngMaxN = ((VSIPLL_FCLK_MAX_FREQ / u64Con1) < u32RngMaxN) ? > + (VSIPLL_FCLK_MAX_FREQ / u64Con1) : u32RngMaxN; min(); > + > + for (u32TmpN = u32RngMinN; u32TmpN < (u32RngMaxN + 1); <= and remove + 1 Name variable as n ? > + u32TmpN++) { One line. > + u64Con2 = u64Con1 * u32TmpN; > + u32RngMinP = 1UL; > + u32RngMaxP = 7UL; Limits to defines? > + u32RngMinP = ((u64Con2 / VSIPLL_FCLKO_MAX_FREQ) > 1) ? > + (u64Con2 / VSIPLL_FCLKO_MAX_FREQ) : 1; > + u32RngMaxP = ((u64Con2 / VSIPLL_FCLKO_MIN_FREQ) < > + u32RngMaxP) ? > + (u64Con2 / VSIPLL_FCLKO_MIN_FREQ) : > + u32RngMaxP; min & max. > + for (u32TmpP = u32RngMinP; u32TmpP < (u32RngMaxP + 1); <= and remove +1? Name variable as p? > + u32TmpP++) { One line. > + u64Con3 = u64Con2 / u32TmpP; > + if (u64Con3 > u64PllFreq) > + u32Tmp = u64Con3 - u64PllFreq; > + else > + u32Tmp = u64PllFreq - u64Con3; abs()? > + > + if (u32Tmp < u32Min) { > + u32Min = u32Tmp; > + u32MinM = u32TmpM; > + u32MinN = u32TmpN; > + u32MinP = u32TmpP; > + > + if (u32Min == 0UL) { goto out? > + u32Reg[0] = (u32MinM << 12) | > + (u32MinN); > + u32Reg[1] = (u32MinP << 4); > + return ((PllSrcClk * u32MinN) / > + (u32MinP * u32MinM)); > + } > + } > + } > + } > + } > + out: ? > + u32Reg[0] = (u32MinM << 12) | (u32MinN); FIELD_PREP() | FIELD_PREP() ? > + u32Reg[1] = (u32MinP << 4); FIELD_PREP() ? > + u64PllClk = (PllSrcClk * u32MinN) / (u32MinP * u32MinM); Use the 64-bit divide from math64.h rather than leave it up to compiler. > + return u64PllClk; > +} > + > +/* VSI-PLL: FRACTIONAL_MODE */ > +unsigned long CLK_CalPLLFreq_Mode1(unsigned long PllSrcClk, > + unsigned long u64PllFreq, u32 *u32Reg) > +{ > + unsigned long u64X, u64N, u64M, u64P, u64tmp; > + unsigned long u64PllClk, u64FCLKO; > + u32 u32FRAC; > + > + if (u64PllFreq > VSIPLL_FCLKO_MAX_FREQ) { > + u32Reg[0] = ma35d1pll_freq[1].ctl0_reg; > + u32Reg[1] = ma35d1pll_freq[1].ctl1_reg; > + u64PllClk = ma35d1pll_freq[1].freq; > + return u64PllClk; > + } > + > + if (u64PllFreq > (VSIPLL_FCLKO_MIN_FREQ/(100-1))) { > + u64FCLKO = u64PllFreq * ((VSIPLL_FCLKO_MIN_FREQ / u64PllFreq) + > + ((VSIPLL_FCLKO_MIN_FREQ % u64PllFreq) ? 1 : 0)); You need to rework this to do 64-bit divide and remainder with something that comes from math64.h. > + } else { > + pr_err("Failed to set rate %ld\n", u64PllFreq); > + return 0; > + } > + > + u64P = (u64FCLKO >= VSIPLL_FCLK_MIN_FREQ) ? 1 : > + ((VSIPLL_FCLK_MIN_FREQ / u64FCLKO) + > + ((VSIPLL_FCLK_MIN_FREQ % u64FCLKO) ? 1 : 0)); Ditto. Is here some ...ROUND_UP() trick hidden too? > + > + if ((PllSrcClk > (VSIPLL_FREFDIVM_MAX_FREQ * (64-1))) || > + (PllSrcClk < VSIPLL_FREFDIVM_MIN_FREQ1)) > + return 0; > + > + u64M = (PllSrcClk <= VSIPLL_FREFDIVM_MAX_FREQ) ? 1 : > + ((PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) + > + ((PllSrcClk % VSIPLL_FREFDIVM_MAX_FREQ) ? 1 : 0)); Ditto. > + > + u64tmp = (u64FCLKO * u64P * u64M * 1000) / PllSrcClk; > + u64N = u64tmp / 1000; > + u64X = u64tmp % 1000; math64.h x 3 (or x2 since you can get remainder for free I think). > + u32FRAC = ((u64X << 24) + 500) / 1000; > + u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000; > + > + u32Reg[0] = (u64M << 12) | (u64N); FIELD_PREP() ? > + u32Reg[1] = (u64P << 4) | (u32FRAC << 8); FIELD_PREP() ? > + return u64PllClk; > +} > + > +/* VSI-PLL: SS_MODE */ > +unsigned long CLK_CalPLLFreq_Mode2(unsigned long PllSrcClk, > + unsigned long u64PllFreq, > + u32 u32SR, u32 u32Fmod, u32 *u32Reg) > +{ > + unsigned long u64X, u64N, u64M, u64P, u64tmp, u64tmpP, u64tmpM; > + unsigned long u64SSRATE, u64SLOPE, u64PllClk, u64FCLKO; > + u32 u32FRAC, i; > + > + if (u64PllFreq >= VSIPLL_FCLKO_MAX_FREQ) { > + u32Reg[0] = ma35d1pll_freq[2].ctl0_reg; > + u32Reg[1] = ma35d1pll_freq[2].ctl1_reg; > + u32Reg[2] = ma35d1pll_freq[2].ctl2_reg; > + u64PllClk = ma35d1pll_freq[2].freq; > + return u64PllClk; > + } > + > + if (u64PllFreq < VSIPLL_FCLKO_MIN_FREQ) { > + u64FCLKO = 0; > + for (i = 2; i < 8; i++) { > + u64tmp = (i * u64PllFreq); > + if (u64tmp > VSIPLL_FCLKO_MIN_FREQ) VSIPLL_FCLKO_MAX_FREQ check is not required ? > + u64FCLKO = u64tmp; > + } > + if (u64FCLKO == 0) { > + pr_err("Failed to set rate %ld\n", u64PllFreq); > + return 0; > + } > + > + } else > + u64FCLKO = u64PllFreq; > + > + u64P = 0; > + for (i = 1; i < 8; i++) { > + u64tmpP = i * u64FCLKO; > + if ((u64tmpP <= VSIPLL_FCLK_MAX_FREQ) && > + (u64tmpP >= VSIPLL_FCLK_MIN_FREQ)) { > + u64P = i; > + break; > + } > + } > + > + if (u64P == 0) > + return 0; > + > + u64M = 0; > + for (i = 1; i < 64; i++) { > + u64tmpM = PllSrcClk / i; > + if ((u64tmpM <= VSIPLL_FREFDIVM_MAX_FREQ) && > + (u64tmpM >= VSIPLL_FREFDIVM_MIN_FREQ1)) { > + u64M = i; > + break; > + } > + } > + > + if (u64M == 0) > + return 0; > + > + u64tmp = (u64FCLKO * u64P * u64M * 1000) / PllSrcClk; > + u64N = u64tmp / 1000; > + u64X = u64tmp % 1000; > + u32FRAC = ((u64X << 24) + 500) / 1000; > + > + u64SSRATE = ((PllSrcClk >> 1) / (u32Fmod * 2)) - 1; > + u64SLOPE = ((u64tmp * u32SR / u64SSRATE) << 24) / 100 / 1000; > + > + u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000; Is some *SEC_PER_*SEC define relevant for 1000 ? Or some other units, e.g., HZ related? > + > + u32Reg[0] = (u64SSRATE << VSIPLLCTL0_SSRATE_POS) | (u64M << > + VSIPLLCTL0_INDIV_POS) | (u64N); FIELD_PREP() > + u32Reg[1] = (u64P << VSIPLLCTL1_OUTDIV_POS) | (u32FRAC << VSIPLLCTL1_FRAC_POS); Instead of _POS named variables, add GENMASK one instead and use FIELD_PREP. You might need to use GENMASK_ULL() for the masks if you are dealing with true 64-bitness here instead of the quasi unsigned longs. > + u32Reg[2] = u64SLOPE; > + return u64PllClk; > +} > + > +unsigned long CLK_SetPLLFreq(struct ma35d1_clk_pll *pll, > + unsigned long PllSrcClk, > + unsigned long u64PllFreq) > +{ > + u32 u32Reg[3] = { 0 }, val_ctl0, val_ctl1, val_ctl2; > + unsigned long u64PllClk; > + > + val_ctl0 = __raw_readl(pll->ctl0_base); > + val_ctl1 = __raw_readl(pll->ctl1_base); > + val_ctl2 = __raw_readl(pll->ctl2_base); > + > + switch (pll->mode) { > + case VSIPLL_INTEGER_MODE: > + u64PllClk = CLK_CalPLLFreq_Mode0(PllSrcClk, u64PllFreq, > + u32Reg); One line. > + val_ctl0 = u32Reg[0] | > + (VSIPLL_INTEGER_MODE << VSIPLLCTL0_MODE_POS); GENMASK() + FIELD_PREP() > + break; > + case VSIPLL_FRACTIONAL_MODE: > + u64PllClk = CLK_CalPLLFreq_Mode1(PllSrcClk, u64PllFreq, > + u32Reg); > + val_ctl0 = u32Reg[0] | > + (VSIPLL_FRACTIONAL_MODE << VSIPLLCTL0_MODE_POS); Ditto. > + break; > + case VSIPLL_SS_MODE: > + u64PllClk = CLK_CalPLLFreq_Mode2(PllSrcClk, u64PllFreq, > + VSIPLL_MODULATION_FREQ, > + VSIPLL_SPREAD_RANGE, u32Reg); > + val_ctl0 = u32Reg[0] | > + (VSIPLL_SS_MODE << VSIPLLCTL0_MODE_POS); Ditto. > + break; > + } > + > + val_ctl1 = VSIPLLCTL1_PD_MSK | u32Reg[1]; > + val_ctl2 = u32Reg[2]; > + > + __raw_writel(val_ctl0, pll->ctl0_base); > + __raw_writel(val_ctl1, pll->ctl1_base); > + __raw_writel(val_ctl2, pll->ctl2_base); > + return u64PllClk; > +} > + > +unsigned long CLK_GetPLLFreq_VSIPLL(struct ma35d1_clk_pll *pll, > + unsigned long PllSrcClk) > +{ > + u32 u32M, u32N, u32P, u32X, u32SR, u32FMOD; > + u32 val_ctl0, val_ctl1, val_ctl2; > + unsigned long u64PllClk, u64X; > + > + val_ctl0 = __raw_readl(pll->ctl0_base); > + val_ctl1 = __raw_readl(pll->ctl1_base); > + val_ctl2 = __raw_readl(pll->ctl2_base); > + > + if (val_ctl1 & PLLXCTL1_BP_MSK) { > + u64PllClk = PllSrcClk; > + return u64PllClk; > + } > + > + if (pll->mode == VSIPLL_INTEGER_MODE) { > + u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0); > + u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0); > + u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1); > + > + u64PllClk = PllSrcClk * u32N; > + do_div(u64PllClk, u32M * u32P); > + > + } else if (pll->mode == VSIPLL_FRACTIONAL_MODE) { > + u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0); > + u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0); > + u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1); > + u32X = FIELD_GET(PLLXCTL1_FRAC_MSK, val_ctl1); > + u64X = (u64) u32X; > + u64X = (((u64X * 1000) + 500) >> 24); > + u64PllClk = (PllSrcClk * ((u32N * 1000) + u64X)) / > + 1000 / u32P / u32M; math64.h Please fix the remaining ones w/o me noting them down. > + > + } else { > + u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0); > + u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0); > + u32SR = FIELD_GET(PLLXCTL0_SSRATE_MSK, val_ctl0); > + u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1); > + u32X = FIELD_GET(PLLXCTL1_FRAC_MSK, val_ctl1); > + u32FMOD = FIELD_GET(PLLXCTL2_SLOPE_MSK, val_ctl2); > + u64X = (u64) u32X; > + u64X = ((u64X * 1000) >> 24); > + u64PllClk = (PllSrcClk * ((u32N * 1000) + u64X)) / > + 1000 / u32P / u32M; > + } > + return u64PllClk; > +} > + > +static int ma35d1_clk_pll_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw); > + > + if ((parent_rate < VSIPLL_FREF_MIN_FREQ) || > + (parent_rate > VSIPLL_FREF_MAX_FREQ)) > + return 0; > + > + if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) { > + pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n"); > + return -EACCES; > + } > + CLK_UnLockReg(pll); > + pll->rate = CLK_SetPLLFreq(pll, parent_rate, rate); > + CLK_LockReg(pll); > + return 0; > +} > + > +static unsigned long ma35d1_clk_pll_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + unsigned long pllfreq; > + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw); > + > + if ((parent_rate < VSIPLL_FREF_MIN_FREQ) > + || (parent_rate > VSIPLL_FREF_MAX_FREQ)) > + return 0; > + > + switch (pll->type) { > + case MA35D1_CAPLL: > + pllfreq = CLK_GetPLLFreq_SMICPLL(pll, parent_rate); > + break; > + case MA35D1_DDRPLL: > + case MA35D1_APLL: > + case MA35D1_EPLL: > + case MA35D1_VPLL: > + pllfreq = CLK_GetPLLFreq_VSIPLL(pll, parent_rate); > + break; > + } > + > + return pllfreq; > +} > + > +static long ma35d1_clk_pll_round_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long *prate) > +{ > + return rate; > +} > + > +static int ma35d1_clk_pll_is_prepared(struct clk_hw *hw) > +{ > + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw); > + u32 val = __raw_readl(pll->ctl1_base); > + > + return (val & VSIPLLCTL1_PD_MSK) ? 0 : 1; Unnecessary parenthesis > +} > + > +static int ma35d1_clk_pll_prepare(struct clk_hw *hw) > +{ > + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw); > + u32 val; > + > + if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) { > + pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n"); > + return -EACCES; > + } Add helper for this, there is more than 1 copy of this. > + > + CLK_UnLockReg(pll); > + val = __raw_readl(pll->ctl1_base); > + val &= ~VSIPLLCTL1_PD_MSK; > + __raw_writel(val, pll->ctl1_base); > + CLK_LockReg(pll); > + return 0; > +} > + > +static void ma35d1_clk_pll_unprepare(struct clk_hw *hw) > +{ > + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw); > + u32 val; > + > + if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) { > + pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n"); > + } else { > + val = __raw_readl(pll->ctl1_base); > + val |= VSIPLLCTL1_PD_MSK; > + __raw_writel(val, pll->ctl1_base); > + } > +} > + > +static const struct clk_ops ma35d1_clk_pll_ops = { > + .is_prepared = ma35d1_clk_pll_is_prepared, > + .prepare = ma35d1_clk_pll_prepare, > + .unprepare = ma35d1_clk_pll_unprepare, > + .set_rate = ma35d1_clk_pll_set_rate, > + .recalc_rate = ma35d1_clk_pll_recalc_rate, > + .round_rate = ma35d1_clk_pll_round_rate, > +}; > + > +struct clk_hw *ma35d1_reg_clk_pll(enum ma35d1_pll_type type, > + u8 u8mode, const char *name, > + const char *parent, > + unsigned long targetFreq, > + void __iomem *base, > + struct regmap *regmap) > +{ > + struct ma35d1_clk_pll *pll; > + struct clk_hw *hw; > + struct clk_init_data init; > + int ret; > + > + pll = kmalloc(sizeof(*pll), GFP_KERNEL); > + if (!pll) > + return ERR_PTR(-ENOMEM); > + > + pll->type = type; > + pll->mode = u8mode; > + pll->rate = targetFreq; > + pll->ctl0_base = base + VSIPLL_CTL0; > + pll->ctl1_base = base + VSIPLL_CTL1; > + pll->ctl2_base = base + VSIPLL_CTL2; > + pll->regmap = regmap; > + > + init.name = name; > + init.flags = 0; > + init.parent_names = &parent; > + init.num_parents = 1; > + init.ops = &ma35d1_clk_pll_ops; > + pll->hw.init = &init; > + hw = &pll->hw; > + > + ret = clk_hw_register(NULL, hw); > + if (ret) { > + pr_err("failed to register vsi-pll clock!!!\n"); No need to use ! let alone 3 of them. > + kfree(pll); > + return ERR_PTR(ret); > + } > + return hw; > +} > diff --git a/drivers/clk/nuvoton/clk-ma35d1.c b/drivers/clk/nuvoton/clk-ma35d1.c > new file mode 100644 > index 000000000000..ac8154458b81 > --- /dev/null > +++ b/drivers/clk/nuvoton/clk-ma35d1.c > @@ -0,0 +1,970 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (C) 2023 Nuvoton Technology Corp. > + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx> > + */ > + > +#include <linux/clk.h> > +#include <linux/clk-provider.h> > +#include <linux/clkdev.h> > +#include <linux/io.h> > +#include <linux/module.h> > +#include <linux/of.h> > +#include <linux/of_address.h> > +#include <linux/platform_device.h> > +#include <linux/spinlock.h> > +#include <dt-bindings/clock/nuvoton,ma35d1-clk.h> > + > +#include "clk-ma35d1.h" > + > +DEFINE_SPINLOCK(ma35d1_lock); > + > +static const char *const ca35clk_sel_clks[] = { > + "hxt", "capll", "ddrpll", "dummy" > +}; > + > +static const char *const sysclk0_sel_clks[] = { > + "epll_div2", "syspll" > +}; > + > +static const char *const sysclk1_sel_clks[] = { > + "hxt", "syspll" > +}; > + > +static const char *const axiclk_sel_clks[] = { > + "capll_div2", "capll_div4" > +}; > + > +static const char *const ccap_sel_clks[] = { > + "hxt", "vpll", "apll", "syspll" > +}; > + > +static const char *const sdh_sel_clks[] = { > + "syspll", "apll", "dummy", "dummy" > +}; > + > +static const char *const dcu_sel_clks[] = { > + "epll_div2", "syspll" > +}; > + > +static const char *const gfx_sel_clks[] = { > + "epll", "syspll" > +}; > + > +static const char *const dbg_sel_clks[] = { > + "hirc", "syspll" > +}; > + > +static const char *const timer0_sel_clks[] = { > + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer1_sel_clks[] = { > + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer2_sel_clks[] = { > + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer3_sel_clks[] = { > + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer4_sel_clks[] = { > + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer5_sel_clks[] = { > + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer6_sel_clks[] = { > + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer7_sel_clks[] = { > + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer8_sel_clks[] = { > + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer9_sel_clks[] = { > + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer10_sel_clks[] = { > + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const timer11_sel_clks[] = { > + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc" > +}; > + > +static const char *const uart_sel_clks[] = { > + "hxt", "sysclk1_div2", "dummy", "dummy" > +}; > + > +static const char *const wdt0_sel_clks[] = { > + "dummy", "lxt", "pclk3_div4096", "lirc" > +}; > + > +static const char *const wdt1_sel_clks[] = { > + "dummy", "lxt", "pclk3_div4096", "lirc" > +}; > + > +static const char *const wdt2_sel_clks[] = { > + "dummy", "lxt", "pclk4_div4096", "lirc" > +}; > + > +static const char *const wwdt0_sel_clks[] = { > + "dummy", "dummy", "pclk3_div4096", "lirc" > +}; > + > +static const char *const wwdt1_sel_clks[] = { > + "dummy", "dummy", "pclk3_div4096", "lirc" > +}; > + > +static const char *const wwdt2_sel_clks[] = { > + "dummy", "dummy", "pclk4_div4096", "lirc" > +}; > + > +static const char *const spi0_sel_clks[] = { > + "pclk1", "apll", "dummy", "dummy" > +}; > + > +static const char *const spi1_sel_clks[] = { > + "pclk2", "apll", "dummy", "dummy" > +}; > + > +static const char *const spi2_sel_clks[] = { > + "pclk1", "apll", "dummy", "dummy" > +}; > + > +static const char *const spi3_sel_clks[] = { > + "pclk2", "apll", "dummy", "dummy" > +}; > + > +static const char *const qspi0_sel_clks[] = { > + "pclk0", "apll", "dummy", "dummy" > +}; > + > +static const char *const qspi1_sel_clks[] = { > + "pclk0", "apll", "dummy", "dummy" > +}; > + > +static const char *const i2s0_sel_clks[] = { > + "apll", "sysclk1_div2", "dummy", "dummy" > +}; > + > +static const char *const i2s1_sel_clks[] = { > + "apll", "sysclk1_div2", "dummy", "dummy" > +}; > + > +static const char *const can_sel_clks[] = { > + "apll", "vpll" > +}; > + > +static const char *const cko_sel_clks[] = { > + "hxt", "lxt", "hirc", "lirc", "capll_div4", "syspll", > + "ddrpll", "epll_div2", "apll", "vpll", "dummy", "dummy", > + "dummy", "dummy", "dummy", "dummy" > +}; > + > +static const char *const smc_sel_clks[] = { > + "hxt", "pclk4" > +}; > + > +static const char *const kpi_sel_clks[] = { > + "hxt", "lxt" > +}; > + > +static const struct clk_div_table ip_div_table[] = { > + {0, 2}, {1, 4}, {2, 6}, {3, 8}, {4, 10}, > + {5, 12}, {6, 14}, {7, 16}, {0, 0}, > +}; > + > +static const struct clk_div_table eadc_div_table[] = { > + {0, 2}, {1, 4}, {2, 6}, {3, 8}, {4, 10}, > + {5, 12}, {6, 14}, {7, 16}, {8, 18}, > + {9, 20}, {10, 22}, {11, 24}, {12, 26}, > + {13, 28}, {14, 30}, {15, 32}, {0, 0}, > +}; > + > +static struct clk_hw **hws; > +static struct clk_hw_onecell_data *ma35d1_hw_data; > + > +static int ma35d1_clocks_probe(struct platform_device *pdev) > +{ > + int ret; > + struct device *dev = &pdev->dev; > + struct device_node *clk_node = dev->of_node; > + void __iomem *clk_base; > + struct regmap *regmap; > + u32 pllmode[5] = { 0, 0, 0, 0, 0 }; > + u32 pllfreq[5] = { 0, 0, 0, 0, 0 }; > + > + dev_info(&pdev->dev, "Nuvoton MA35D1 Clock Driver\n"); > + ma35d1_hw_data = devm_kzalloc(&pdev->dev, struct_size(ma35d1_hw_data, > + hws, CLK_MAX_IDX), GFP_KERNEL); > + > + if (WARN_ON(!ma35d1_hw_data)) > + return -ENOMEM; > + > + ma35d1_hw_data->num = CLK_MAX_IDX; > + hws = ma35d1_hw_data->hws; > + > + clk_node = of_find_compatible_node(NULL, NULL, "nuvoton,ma35d1-clk"); > + clk_base = of_iomap(clk_node, 0); > + of_node_put(clk_node); > + if (!clk_base) { > + pr_err("%s: could not map region\n", __func__); > + return -ENOMEM; > + } > + regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, > + "nuvoton,sys"); > + if (IS_ERR(regmap)) > + pr_warn("%s: Unable to get syscon\n", __func__); Don't print __func__ to user. > + > + /* clock sources */ > + hws[HXT] = ma35d1_clk_fixed("hxt", 24000000); > + hws[HXT_GATE] = ma35d1_clk_gate("hxt_gate", "hxt", > + clk_base + REG_CLK_PWRCTL, 0); > + hws[LXT] = ma35d1_clk_fixed("lxt", 32768); > + hws[LXT_GATE] = ma35d1_clk_gate("lxt_gate", "lxt", > + clk_base + REG_CLK_PWRCTL, 1); > + hws[HIRC] = ma35d1_clk_fixed("hirc", 12000000); > + hws[HIRC_GATE] = ma35d1_clk_gate("hirc_gate", "hirc", > + clk_base + REG_CLK_PWRCTL, 2); > + hws[LIRC] = ma35d1_clk_fixed("lirc", 32000); > + hws[LIRC_GATE] = ma35d1_clk_gate("lirc_gate", "lirc", > + clk_base + REG_CLK_PWRCTL, 3); > + > + /* PLL */ > + of_property_read_u32_array(clk_node, "clock-pll-mode", pllmode, > + ARRAY_SIZE(pllmode)); > + of_property_read_u32_array(clk_node, "assigned-clock-rates", pllfreq, > + ARRAY_SIZE(pllfreq)); > + > + /* SMIC PLL */ > + hws[CAPLL] = ma35d1_reg_clk_pll(MA35D1_CAPLL, pllmode[0], "capll", > + "hxt", pllfreq[0], > + clk_base + REG_CLK_PLL0CTL0, regmap); > + hws[SYSPLL] = ma35d1_clk_fixed("syspll", 180000000); > + > + /* VSI PLL */ > + hws[DDRPLL] = ma35d1_reg_clk_pll(MA35D1_DDRPLL, pllmode[1], "ddrpll", > + "hxt", pllfreq[1], > + clk_base + REG_CLK_PLL2CTL0, regmap); > + hws[APLL] = ma35d1_reg_clk_pll(MA35D1_APLL, pllmode[2], "apll", "hxt", > + pllfreq[2], clk_base + REG_CLK_PLL3CTL0, > + regmap); > + hws[EPLL] = ma35d1_reg_clk_pll(MA35D1_EPLL, pllmode[3], "epll", "hxt", > + pllfreq[3], clk_base + REG_CLK_PLL4CTL0, > + regmap); > + hws[VPLL] = ma35d1_reg_clk_pll(MA35D1_VPLL, pllmode[4], "vpll", "hxt", > + pllfreq[4], clk_base + REG_CLK_PLL5CTL0, > + regmap); > + hws[EPLL_DIV2] = ma35d1_clk_fixed_factor("epll_div2", "epll", 1, 2); > + hws[EPLL_DIV4] = ma35d1_clk_fixed_factor("epll_div4", "epll", 1, 4); > + hws[EPLL_DIV8] = ma35d1_clk_fixed_factor("epll_div8", "epll", 1, 8); > + > + /* CA35 */ > + hws[CA35CLK_MUX] = ma35d1_clk_mux("ca35clk_mux", > + clk_base + REG_CLK_CLKSEL0, 0, > + 2, ca35clk_sel_clks, > + ARRAY_SIZE(ca35clk_sel_clks)); > + > + /* AXI */ > + hws[AXICLK_DIV2] = ma35d1_clk_fixed_factor("capll_div2", "ca35clk_mux", > + 1, 2); > + hws[AXICLK_DIV4] = ma35d1_clk_fixed_factor("capll_div4", "ca35clk_mux", > + 1, 4); > + hws[AXICLK_MUX] = ma35d1_clk_mux("axiclk_mux", > + clk_base + REG_CLK_CLKDIV0, > + 26, 1, axiclk_sel_clks, > + ARRAY_SIZE(axiclk_sel_clks)); > + > + /* SYSCLK0 & SYSCLK1 */ > + hws[SYSCLK0_MUX] = ma35d1_clk_mux("sysclk0_mux", > + clk_base + REG_CLK_CLKSEL0, > + 2, 1, sysclk0_sel_clks, > + ARRAY_SIZE(sysclk0_sel_clks)); > + hws[SYSCLK1_MUX] = ma35d1_clk_mux("sysclk1_mux", > + clk_base + REG_CLK_CLKSEL0, > + 4, 1, sysclk1_sel_clks, > + ARRAY_SIZE(sysclk1_sel_clks)); > + hws[SYSCLK1_DIV2] = ma35d1_clk_fixed_factor("sysclk1_div2", > + "sysclk1_mux", 1, 2); > + > + /* HCLK0~3 & PCLK0~4 */ > + hws[HCLK0] = ma35d1_clk_fixed_factor("hclk0", "sysclk1_mux", 1, 1); > + hws[HCLK1] = ma35d1_clk_fixed_factor("hclk1", "sysclk1_mux", 1, 1); > + hws[HCLK2] = ma35d1_clk_fixed_factor("hclk2", "sysclk1_mux", 1, 1); > + hws[PCLK0] = ma35d1_clk_fixed_factor("pclk0", "sysclk1_mux", 1, 1); > + hws[PCLK1] = ma35d1_clk_fixed_factor("pclk1", "sysclk1_mux", 1, 1); > + hws[PCLK2] = ma35d1_clk_fixed_factor("pclk2", "sysclk1_mux", 1, 1); > + > + hws[HCLK3] = ma35d1_clk_fixed_factor("hclk3", "sysclk1_mux", 1, 2); > + hws[PCLK3] = ma35d1_clk_fixed_factor("pclk3", "sysclk1_mux", 1, 2); > + hws[PCLK4] = ma35d1_clk_fixed_factor("pclk4", "sysclk1_mux", 1, 2); > + > + hws[USBPHY0] = ma35d1_clk_fixed("usbphy0", 480000000); > + hws[USBPHY1] = ma35d1_clk_fixed("usbphy1", 480000000); > + > + /* DDR */ > + hws[DDR0_GATE] = ma35d1_clk_gate("ddr0_gate", "ddrpll", > + clk_base + REG_CLK_SYSCLK0, 4); > + hws[DDR6_GATE] = ma35d1_clk_gate("ddr6_gate", "ddrpll", > + clk_base + REG_CLK_SYSCLK0, 5); > + > + /* CAN0 */ > + hws[CAN0_MUX] = ma35d1_clk_mux("can0_mux", clk_base + REG_CLK_CLKSEL4, > + 16, 1, can_sel_clks, > + ARRAY_SIZE(can_sel_clks)); > + hws[CAN0_DIV] = ma35d1_clk_divider_table("can0_div", "can0_mux", > + clk_base + REG_CLK_CLKDIV0, > + 0, 3, ip_div_table); > + hws[CAN0_GATE] = ma35d1_clk_gate("can0_gate", "can0_div", > + clk_base + REG_CLK_SYSCLK0, 8); > + > + /* CAN1 */ > + hws[CAN1_MUX] = ma35d1_clk_mux("can1_mux", clk_base + REG_CLK_CLKSEL4, > + 17, 1, can_sel_clks, > + ARRAY_SIZE(can_sel_clks)); > + hws[CAN1_DIV] = ma35d1_clk_divider_table("can1_div", "can1_mux", > + clk_base + REG_CLK_CLKDIV0, > + 4, 3, ip_div_table); > + hws[CAN1_GATE] = ma35d1_clk_gate("can1_gate", "can1_div", > + clk_base + REG_CLK_SYSCLK0, 9); > + > + /* CAN2 */ > + hws[CAN2_MUX] = ma35d1_clk_mux("can2_mux", clk_base + REG_CLK_CLKSEL4, > + 18, 1, can_sel_clks, > + ARRAY_SIZE(can_sel_clks)); > + hws[CAN2_DIV] = ma35d1_clk_divider_table("can2_div", "can2_mux", > + clk_base + REG_CLK_CLKDIV0, > + 8, 3, ip_div_table); > + hws[CAN2_GATE] = ma35d1_clk_gate("can2_gate", "can2_div", > + clk_base + REG_CLK_SYSCLK0, 10); > + > + /* CAN3 */ > + hws[CAN3_MUX] = ma35d1_clk_mux("can3_mux", clk_base + REG_CLK_CLKSEL4, > + 19, 1, can_sel_clks, > + ARRAY_SIZE(can_sel_clks)); > + hws[CAN3_DIV] = ma35d1_clk_divider_table("can3_div", "can3_mux", > + clk_base + REG_CLK_CLKDIV0, > + 12, 3, ip_div_table); > + hws[CAN3_GATE] = ma35d1_clk_gate("can3_gate", "can3_div", > + clk_base + REG_CLK_SYSCLK0, 11); > + > + /* SDH0 */ > + hws[SDH0_MUX] = ma35d1_clk_mux("sdh0_mux", clk_base + REG_CLK_CLKSEL0, > + 16, 2, sdh_sel_clks, > + ARRAY_SIZE(sdh_sel_clks)); > + hws[SDH0_GATE] = ma35d1_clk_gate("sdh0_gate", "sdh0_mux", > + clk_base + REG_CLK_SYSCLK0, 16); > + > + /* SDH1 */ > + hws[SDH1_MUX] = ma35d1_clk_mux("sdh1_mux", clk_base + REG_CLK_CLKSEL0, > + 18, 2, sdh_sel_clks, > + ARRAY_SIZE(sdh_sel_clks)); > + hws[SDH1_GATE] = ma35d1_clk_gate("sdh1_gate", "sdh1_mux", > + clk_base + REG_CLK_SYSCLK0, 17); > + > + /* NAND */ > + hws[NAND_GATE] = ma35d1_clk_gate("nand_gate", "hclk1", > + clk_base + REG_CLK_SYSCLK0, 18); > + > + /* USB */ > + hws[USBD_GATE] = ma35d1_clk_gate("usbd_gate", "usbphy0", > + clk_base + REG_CLK_SYSCLK0, 19); > + hws[USBH_GATE] = ma35d1_clk_gate("usbh_gate", "usbphy0", > + clk_base + REG_CLK_SYSCLK0, 20); > + hws[HUSBH0_GATE] = ma35d1_clk_gate("husbh0_gate", "usbphy0", > + clk_base + REG_CLK_SYSCLK0, 21); > + hws[HUSBH1_GATE] = ma35d1_clk_gate("husbh1_gate", "usbphy0", > + clk_base + REG_CLK_SYSCLK0, 22); > + > + /* GFX */ > + hws[GFX_MUX] = ma35d1_clk_mux("gfx_mux", clk_base + REG_CLK_CLKSEL0, > + 26, 1, gfx_sel_clks, > + ARRAY_SIZE(gfx_sel_clks)); > + hws[GFX_GATE] = ma35d1_clk_gate("gfx_gate", "gfx_mux", > + clk_base + REG_CLK_SYSCLK0, 24); > + > + /* VC8K */ > + hws[VC8K_GATE] = ma35d1_clk_gate("vc8k_gate", "sysclk0_mux", > + clk_base + REG_CLK_SYSCLK0, 25); > + > + /* DCU */ > + hws[DCU_MUX] = ma35d1_clk_mux("dcu_mux", clk_base + REG_CLK_CLKSEL0, > + 24, 1, dcu_sel_clks, > + ARRAY_SIZE(dcu_sel_clks)); > + hws[DCU_GATE] = ma35d1_clk_gate("dcu_gate", "dcu_mux", > + clk_base + REG_CLK_SYSCLK0, 26); > + > + /* DCUP */ > + hws[DCUP_DIV] = ma35d1_clk_divider_table("dcup_div", "vpll", > + clk_base + REG_CLK_CLKDIV0, > + 16, 3, ip_div_table); > + > + /* EMAC0 */ > + hws[EMAC0_GATE] = ma35d1_clk_gate("emac0_gate", "epll_div2", > + clk_base + REG_CLK_SYSCLK0, 27); > + > + /* EMAC1 */ > + hws[EMAC1_GATE] = ma35d1_clk_gate("emac1_gate", "epll_div2", > + clk_base + REG_CLK_SYSCLK0, 28); > + > + /* CCAP0 */ > + hws[CCAP0_MUX] = ma35d1_clk_mux("ccap0_mux", > + clk_base + REG_CLK_CLKSEL0, > + 12, 1, ccap_sel_clks, > + ARRAY_SIZE(ccap_sel_clks)); > + hws[CCAP0_DIV] = ma35d1_clk_divider("ccap0_div", "ccap0_mux", > + clk_base + REG_CLK_CLKDIV1, 8, 4); > + hws[CCAP0_GATE] = ma35d1_clk_gate("ccap0_gate", "ccap0_div", > + clk_base + REG_CLK_SYSCLK0, 29); > + > + /* CCAP1 */ > + hws[CCAP1_MUX] = ma35d1_clk_mux("ccap1_mux", > + clk_base + REG_CLK_CLKSEL0, > + 14, 1, ccap_sel_clks, > + ARRAY_SIZE(ccap_sel_clks)); > + hws[CCAP1_DIV] = ma35d1_clk_divider("ccap1_div", "ccap1_mux", > + clk_base + REG_CLK_CLKDIV1, > + 12, 4); > + hws[CCAP1_GATE] = ma35d1_clk_gate("ccap1_gate", "ccap1_div", > + clk_base + REG_CLK_SYSCLK0, 30); > + > + /* PDMA0~3 */ > + hws[PDMA0_GATE] = ma35d1_clk_gate("pdma0_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 0); > + hws[PDMA1_GATE] = ma35d1_clk_gate("pdma1_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 1); > + hws[PDMA2_GATE] = ma35d1_clk_gate("pdma2_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 2); > + hws[PDMA3_GATE] = ma35d1_clk_gate("pdma3_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 3); > + > + /* WH0~1 */ > + hws[WH0_GATE] = ma35d1_clk_gate("wh0_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 4); > + hws[WH1_GATE] = ma35d1_clk_gate("wh1_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 5); > + > + /* HWS */ > + hws[HWS_GATE] = ma35d1_clk_gate("hws_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 6); > + > + /* EBI */ > + hws[EBI_GATE] = ma35d1_clk_gate("ebi_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 7); > + > + /* SRAM0~1 */ > + hws[SRAM0_GATE] = ma35d1_clk_gate("sram0_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 8); > + hws[SRAM1_GATE] = ma35d1_clk_gate("sram1_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 9); > + > + /* ROM */ > + hws[ROM_GATE] = ma35d1_clk_gate("rom_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 10); > + > + /* TRA */ > + hws[TRA_GATE] = ma35d1_clk_gate("tra_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 11); > + > + /* DBG */ > + hws[DBG_MUX] = ma35d1_clk_mux("dbg_mux", clk_base + REG_CLK_CLKSEL0, > + 27, 1, dbg_sel_clks, > + ARRAY_SIZE(dbg_sel_clks)); > + hws[DBG_GATE] = ma35d1_clk_gate("dbg_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 12); > + > + /* CLKO */ > + hws[CKO_MUX] = ma35d1_clk_mux("cko_mux", clk_base + REG_CLK_CLKSEL4, > + 24, 4, cko_sel_clks, > + ARRAY_SIZE(cko_sel_clks)); > + hws[CKO_DIV] = ma35d1_clk_divider_pow2("cko_div", "cko_mux", > + clk_base + REG_CLK_CLKOCTL, > + 0, 4); > + hws[CKO_GATE] = ma35d1_clk_gate("cko_gate", "cko_div", > + clk_base + REG_CLK_SYSCLK1, 13); > + > + /* GTMR */ > + hws[GTMR_GATE] = ma35d1_clk_gate("gtmr_gate", "hirc", > + clk_base + REG_CLK_SYSCLK1, 14); > + > + /* GPIO */ > + hws[GPA_GATE] = ma35d1_clk_gate("gpa_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 16); > + hws[GPB_GATE] = ma35d1_clk_gate("gpb_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 17); > + hws[GPC_GATE] = ma35d1_clk_gate("gpc_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 18); > + hws[GPD_GATE] = ma35d1_clk_gate("gpd_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 19); > + hws[GPE_GATE] = ma35d1_clk_gate("gpe_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 20); > + hws[GPF_GATE] = ma35d1_clk_gate("gpf_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 21); > + hws[GPG_GATE] = ma35d1_clk_gate("gpg_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 22); > + hws[GPH_GATE] = ma35d1_clk_gate("gph_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 23); > + hws[GPI_GATE] = ma35d1_clk_gate("gpi_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 24); > + hws[GPJ_GATE] = ma35d1_clk_gate("gpj_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 25); > + hws[GPK_GATE] = ma35d1_clk_gate("gpk_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 26); > + hws[GPL_GATE] = ma35d1_clk_gate("gpl_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 27); > + hws[GPM_GATE] = ma35d1_clk_gate("gpm_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 28); > + hws[GPN_GATE] = ma35d1_clk_gate("gpn_gate", "hclk0", > + clk_base + REG_CLK_SYSCLK1, 29); > + > + /* TIMER0~11 */ > + hws[TMR0_MUX] = ma35d1_clk_mux("tmr0_mux", clk_base + REG_CLK_CLKSEL1, > + 0, 3, timer0_sel_clks, > + ARRAY_SIZE(timer0_sel_clks)); > + hws[TMR0_GATE] = ma35d1_clk_gate("tmr0_gate", "tmr0_mux", > + clk_base + REG_CLK_APBCLK0, 0); > + hws[TMR1_MUX] = ma35d1_clk_mux("tmr1_mux", clk_base + REG_CLK_CLKSEL1, > + 4, 3, timer1_sel_clks, > + ARRAY_SIZE(timer1_sel_clks)); > + hws[TMR1_GATE] = ma35d1_clk_gate("tmr1_gate", "tmr1_mux", > + clk_base + REG_CLK_APBCLK0, 1); > + hws[TMR2_MUX] = ma35d1_clk_mux("tmr2_mux", clk_base + REG_CLK_CLKSEL1, > + 8, 3, timer2_sel_clks, > + ARRAY_SIZE(timer2_sel_clks)); > + hws[TMR2_GATE] = ma35d1_clk_gate("tmr2_gate", "tmr2_mux", > + clk_base + REG_CLK_APBCLK0, 2); > + hws[TMR3_MUX] = ma35d1_clk_mux("tmr3_mux", clk_base + REG_CLK_CLKSEL1, > + 12, 3, timer3_sel_clks, > + ARRAY_SIZE(timer3_sel_clks)); > + hws[TMR3_GATE] = ma35d1_clk_gate("tmr3_gate", "tmr3_mux", > + clk_base + REG_CLK_APBCLK0, 3); > + hws[TMR4_MUX] = ma35d1_clk_mux("tmr4_mux", clk_base + REG_CLK_CLKSEL1, > + 16, 3, timer4_sel_clks, > + ARRAY_SIZE(timer4_sel_clks)); > + hws[TMR4_GATE] = ma35d1_clk_gate("tmr4_gate", "tmr4_mux", > + clk_base + REG_CLK_APBCLK0, 4); > + hws[TMR5_MUX] = ma35d1_clk_mux("tmr5_mux", clk_base + REG_CLK_CLKSEL1, > + 20, 3, timer5_sel_clks, > + ARRAY_SIZE(timer5_sel_clks)); > + hws[TMR5_GATE] = ma35d1_clk_gate("tmr5_gate", "tmr5_mux", > + clk_base + REG_CLK_APBCLK0, 5); > + hws[TMR6_MUX] = ma35d1_clk_mux("tmr6_mux", clk_base + REG_CLK_CLKSEL1, > + 24, 3, timer6_sel_clks, > + ARRAY_SIZE(timer6_sel_clks)); > + hws[TMR6_GATE] = ma35d1_clk_gate("tmr6_gate", "tmr6_mux", > + clk_base + REG_CLK_APBCLK0, 6); > + hws[TMR7_MUX] = ma35d1_clk_mux("tmr7_mux", clk_base + REG_CLK_CLKSEL1, > + 28, 3, timer7_sel_clks, > + ARRAY_SIZE(timer7_sel_clks)); > + hws[TMR7_GATE] = ma35d1_clk_gate("tmr7_gate", "tmr7_mux", > + clk_base + REG_CLK_APBCLK0, 7); > + hws[TMR8_MUX] = ma35d1_clk_mux("tmr8_mux", clk_base + REG_CLK_CLKSEL2, > + 0, 3, timer8_sel_clks, > + ARRAY_SIZE(timer8_sel_clks)); > + hws[TMR8_GATE] = ma35d1_clk_gate("tmr8_gate", "tmr8_mux", > + clk_base + REG_CLK_APBCLK0, 8); > + hws[TMR9_MUX] = ma35d1_clk_mux("tmr9_mux", clk_base + REG_CLK_CLKSEL2, > + 4, 3, timer9_sel_clks, > + ARRAY_SIZE(timer9_sel_clks)); > + hws[TMR9_GATE] = ma35d1_clk_gate("tmr9_gate", "tmr9_mux", > + clk_base + REG_CLK_APBCLK0, 9); > + hws[TMR10_MUX] = ma35d1_clk_mux("tmr10_mux", > + clk_base + REG_CLK_CLKSEL2, > + 8, 3, timer10_sel_clks, > + ARRAY_SIZE(timer10_sel_clks)); > + hws[TMR10_GATE] = ma35d1_clk_gate("tmr10_gate", "tmr10_mux", > + clk_base + REG_CLK_APBCLK0, 10); > + hws[TMR11_MUX] = ma35d1_clk_mux("tmr11_mux", > + clk_base + REG_CLK_CLKSEL2, > + 12, 3, timer11_sel_clks, > + ARRAY_SIZE(timer11_sel_clks)); > + hws[TMR11_GATE] = ma35d1_clk_gate("tmr11_gate", "tmr11_mux", > + clk_base + REG_CLK_APBCLK0, 11); > + > + /* UART0~16 */ > + hws[UART0_MUX] = ma35d1_clk_mux("uart0_mux", > + clk_base + REG_CLK_CLKSEL2, > + 16, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART0_DIV] = ma35d1_clk_divider("uart0_div", "uart0_mux", > + clk_base + REG_CLK_CLKDIV1, > + 16, 4); > + hws[UART0_GATE] = ma35d1_clk_gate("uart0_gate", "uart0_div", > + clk_base + REG_CLK_APBCLK0, 12); > + hws[UART1_MUX] = ma35d1_clk_mux("uart1_mux", > + clk_base + REG_CLK_CLKSEL2, > + 18, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART1_DIV] = ma35d1_clk_divider("uart1_div", "uart1_mux", > + clk_base + REG_CLK_CLKDIV1, > + 20, 4); > + hws[UART1_GATE] = ma35d1_clk_gate("uart1_gate", "uart1_div", > + clk_base + REG_CLK_APBCLK0, 13); > + hws[UART2_MUX] = ma35d1_clk_mux("uart2_mux", > + clk_base + REG_CLK_CLKSEL2, > + 20, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART2_DIV] = ma35d1_clk_divider("uart2_div", "uart2_mux", > + clk_base + REG_CLK_CLKDIV1, > + 24, 4); > + hws[UART2_GATE] = ma35d1_clk_gate("uart2_gate", "uart2_div", > + clk_base + REG_CLK_APBCLK0, 14); > + hws[UART3_MUX] = ma35d1_clk_mux("uart3_mux", > + clk_base + REG_CLK_CLKSEL2, > + 22, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART3_DIV] = ma35d1_clk_divider("uart3_div", "uart3_mux", > + clk_base + REG_CLK_CLKDIV1, > + 28, 4); > + hws[UART3_GATE] = ma35d1_clk_gate("uart3_gate", "uart3_div", > + clk_base + REG_CLK_APBCLK0, 15); > + hws[UART4_MUX] = ma35d1_clk_mux("uart4_mux", > + clk_base + REG_CLK_CLKSEL2, > + 24, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART4_DIV] = ma35d1_clk_divider("uart4_div", "uart4_mux", > + clk_base + REG_CLK_CLKDIV2, > + 0, 4); > + hws[UART4_GATE] = ma35d1_clk_gate("uart4_gate", "uart4_div", > + clk_base + REG_CLK_APBCLK0, 16); > + hws[UART5_MUX] = ma35d1_clk_mux("uart5_mux", > + clk_base + REG_CLK_CLKSEL2, > + 26, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART5_DIV] = ma35d1_clk_divider("uart5_div", "uart5_mux", > + clk_base + REG_CLK_CLKDIV2, > + 4, 4); > + hws[UART5_GATE] = ma35d1_clk_gate("uart5_gate", "uart5_div", > + clk_base + REG_CLK_APBCLK0, 17); > + hws[UART6_MUX] = ma35d1_clk_mux("uart6_mux", > + clk_base + REG_CLK_CLKSEL2, > + 28, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART6_DIV] = ma35d1_clk_divider("uart6_div", "uart6_mux", > + clk_base + REG_CLK_CLKDIV2, > + 8, 4); > + hws[UART6_GATE] = ma35d1_clk_gate("uart6_gate", "uart6_div", > + clk_base + REG_CLK_APBCLK0, 18); > + hws[UART7_MUX] = ma35d1_clk_mux("uart7_mux", > + clk_base + REG_CLK_CLKSEL2, > + 30, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART7_DIV] = ma35d1_clk_divider("uart7_div", "uart7_mux", > + clk_base + REG_CLK_CLKDIV2, > + 12, 4); > + hws[UART7_GATE] = ma35d1_clk_gate("uart7_gate", "uart7_div", > + clk_base + REG_CLK_APBCLK0, 19); > + hws[UART8_MUX] = ma35d1_clk_mux("uart8_mux", > + clk_base + REG_CLK_CLKSEL3, > + 0, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART8_DIV] = ma35d1_clk_divider("uart8_div", "uart8_mux", > + clk_base + REG_CLK_CLKDIV2, > + 16, 4); > + hws[UART8_GATE] = ma35d1_clk_gate("uart8_gate", "uart8_div", > + clk_base + REG_CLK_APBCLK0, 20); > + hws[UART9_MUX] = ma35d1_clk_mux("uart9_mux", > + clk_base + REG_CLK_CLKSEL3, > + 2, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART9_DIV] = ma35d1_clk_divider("uart9_div", "uart9_mux", > + clk_base + REG_CLK_CLKDIV2, > + 20, 4); > + hws[UART9_GATE] = ma35d1_clk_gate("uart9_gate", "uart9_div", > + clk_base + REG_CLK_APBCLK0, 21); > + hws[UART10_MUX] = ma35d1_clk_mux("uart10_mux", > + clk_base + REG_CLK_CLKSEL3, > + 4, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART10_DIV] = ma35d1_clk_divider("uart10_div", "uart10_mux", > + clk_base + REG_CLK_CLKDIV2, > + 24, 4); > + hws[UART10_GATE] = ma35d1_clk_gate("uart10_gate", "uart10_div", > + clk_base + REG_CLK_APBCLK0, 22); > + hws[UART11_MUX] = ma35d1_clk_mux("uart11_mux", > + clk_base + REG_CLK_CLKSEL3, > + 6, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART11_DIV] = ma35d1_clk_divider("uart11_div", "uart11_mux", > + clk_base + REG_CLK_CLKDIV2, > + 28, 4); > + hws[UART11_GATE] = ma35d1_clk_gate("uart11_gate", "uart11_div", > + clk_base + REG_CLK_APBCLK0, 23); > + hws[UART12_MUX] = ma35d1_clk_mux("uart12_mux", > + clk_base + REG_CLK_CLKSEL3, > + 8, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART12_DIV] = ma35d1_clk_divider("uart12_div", "uart12_mux", > + clk_base + REG_CLK_CLKDIV3, > + 0, 4); > + hws[UART12_GATE] = ma35d1_clk_gate("uart12_gate", "uart12_div", > + clk_base + REG_CLK_APBCLK0, 24); > + hws[UART13_MUX] = ma35d1_clk_mux("uart13_mux", > + clk_base + REG_CLK_CLKSEL3, > + 10, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART13_DIV] = ma35d1_clk_divider("uart13_div", "uart13_mux", > + clk_base + REG_CLK_CLKDIV3, > + 4, 4); > + hws[UART13_GATE] = ma35d1_clk_gate("uart13_gate", "uart13_div", > + clk_base + REG_CLK_APBCLK0, 25); > + hws[UART14_MUX] = ma35d1_clk_mux("uart14_mux", > + clk_base + REG_CLK_CLKSEL3, > + 12, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART14_DIV] = ma35d1_clk_divider("uart14_div", "uart14_mux", > + clk_base + REG_CLK_CLKDIV3, > + 8, 4); > + hws[UART14_GATE] = ma35d1_clk_gate("uart14_gate", "uart14_div", > + clk_base + REG_CLK_APBCLK0, 26); > + hws[UART15_MUX] = ma35d1_clk_mux("uart15_mux", > + clk_base + REG_CLK_CLKSEL3, > + 14, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART15_DIV] = ma35d1_clk_divider("uart15_div", "uart15_mux", > + clk_base + REG_CLK_CLKDIV3, > + 12, 4); > + hws[UART15_GATE] = ma35d1_clk_gate("uart15_gate", "uart15_div", > + clk_base + REG_CLK_APBCLK0, 27); > + hws[UART16_MUX] = ma35d1_clk_mux("uart16_mux", > + clk_base + REG_CLK_CLKSEL3, > + 16, 2, uart_sel_clks, > + ARRAY_SIZE(uart_sel_clks)); > + hws[UART16_DIV] = ma35d1_clk_divider("uart16_div", "uart16_mux", > + clk_base + REG_CLK_CLKDIV3, > + 16, 4); > + hws[UART16_GATE] = ma35d1_clk_gate("uart16_gate", "uart16_div", > + clk_base + REG_CLK_APBCLK0, 28); > + > + /* RTC */ > + hws[RTC_GATE] = ma35d1_clk_gate("rtc_gate", "lxt", > + clk_base + REG_CLK_APBCLK0, 29); > + > + /* DDRP */ > + hws[DDR_GATE] = ma35d1_clk_gate("ddr_gate", "ddrpll", > + clk_base + REG_CLK_APBCLK0, 30); > + > + /* KPI */ > + hws[KPI_MUX] = ma35d1_clk_mux("kpi_mux", clk_base + REG_CLK_CLKSEL4, > + 30, 1, kpi_sel_clks, > + ARRAY_SIZE(kpi_sel_clks)); > + hws[KPI_DIV] = ma35d1_clk_divider("kpi_div", "kpi_mux", > + clk_base + REG_CLK_CLKDIV4, > + 24, 8); > + hws[KPI_GATE] = ma35d1_clk_gate("kpi_gate", "kpi_div", > + clk_base + REG_CLK_APBCLK0, 31); > + > + /* I2C0~5 */ > + hws[I2C0_GATE] = ma35d1_clk_gate("i2c0_gate", "pclk0", > + clk_base + REG_CLK_APBCLK1, 0); > + hws[I2C1_GATE] = ma35d1_clk_gate("i2c1_gate", "pclk1", > + clk_base + REG_CLK_APBCLK1, 1); > + hws[I2C2_GATE] = ma35d1_clk_gate("i2c2_gate", "pclk2", > + clk_base + REG_CLK_APBCLK1, 2); > + hws[I2C3_GATE] = ma35d1_clk_gate("i2c3_gate", "pclk0", > + clk_base + REG_CLK_APBCLK1, 3); > + hws[I2C4_GATE] = ma35d1_clk_gate("i2c4_gate", "pclk1", > + clk_base + REG_CLK_APBCLK1, 4); > + hws[I2C5_GATE] = ma35d1_clk_gate("i2c5_gate", "pclk2", > + clk_base + REG_CLK_APBCLK1, 5); > + > + /* QSPI0~1 */ > + hws[QSPI0_MUX] = ma35d1_clk_mux("qspi0_mux", > + clk_base + REG_CLK_CLKSEL4, > + 8, 2, qspi0_sel_clks, > + ARRAY_SIZE(qspi0_sel_clks)); > + hws[QSPI0_GATE] = ma35d1_clk_gate("qspi0_gate", "qspi0_mux", > + clk_base + REG_CLK_APBCLK1, 6); > + hws[QSPI1_MUX] = ma35d1_clk_mux("qspi1_mux", > + clk_base + REG_CLK_CLKSEL4, > + 10, 2, qspi1_sel_clks, > + ARRAY_SIZE(qspi1_sel_clks)); > + hws[QSPI1_GATE] = ma35d1_clk_gate("qspi1_gate", "qspi1_mux", > + clk_base + REG_CLK_APBCLK1, 7); > + > + /* SMC0~1 */ > + hws[SMC0_MUX] = ma35d1_clk_mux("smc0_mux", > + clk_base + REG_CLK_CLKSEL4, > + 28, 1, smc_sel_clks, > + ARRAY_SIZE(smc_sel_clks)); > + hws[SMC0_DIV] = ma35d1_clk_divider("smc0_div", "smc0_mux", > + clk_base + REG_CLK_CLKDIV1, > + 0, 4); > + hws[SMC0_GATE] = ma35d1_clk_gate("smc0_gate", "smc0_div", > + clk_base + REG_CLK_APBCLK1, 12); > + > + hws[SMC1_MUX] = ma35d1_clk_mux("smc1_mux", > + clk_base + REG_CLK_CLKSEL4, > + 29, 1, smc_sel_clks, > + ARRAY_SIZE(smc_sel_clks)); > + hws[SMC1_DIV] = ma35d1_clk_divider("smc1_div", "smc1_mux", > + clk_base + REG_CLK_CLKDIV1, > + 4, 4); > + hws[SMC1_GATE] = ma35d1_clk_gate("smc1_gate", "smc1_div", > + clk_base + REG_CLK_APBCLK1, 13); > + > + /* WDT0~2 */ > + hws[WDT0_MUX] = ma35d1_clk_mux("wdt0_mux", > + clk_base + REG_CLK_CLKSEL3, > + 20, 2, wdt0_sel_clks, > + ARRAY_SIZE(wdt0_sel_clks)); > + hws[WDT0_GATE] = ma35d1_clk_gate("wdt0_gate", "wdt0_mux", > + clk_base + REG_CLK_APBCLK1, 16); > + hws[WDT1_MUX] = ma35d1_clk_mux("wdt1_mux", > + clk_base + REG_CLK_CLKSEL3, > + 24, 2, wdt1_sel_clks, > + ARRAY_SIZE(wdt1_sel_clks)); > + hws[WDT1_GATE] = ma35d1_clk_gate("wdt1_gate", "wdt1_mux", > + clk_base + REG_CLK_APBCLK1, 17); > + hws[WDT2_MUX] = ma35d1_clk_mux("wdt2_mux", > + clk_base + REG_CLK_CLKSEL3, > + 28, 2, wdt2_sel_clks, > + ARRAY_SIZE(wdt2_sel_clks)); > + hws[WDT2_GATE] = ma35d1_clk_gate("wdt2_gate", "wdt2_mux", > + clk_base + REG_CLK_APBCLK1, 18); > + > + /* WWDT0~2 */ > + hws[WWDT0_MUX] = ma35d1_clk_mux("wwdt0_mux", > + clk_base + REG_CLK_CLKSEL3, > + 22, 2, wwdt0_sel_clks, > + ARRAY_SIZE(wwdt0_sel_clks)); > + hws[WWDT1_MUX] = ma35d1_clk_mux("wwdt1_mux", > + clk_base + REG_CLK_CLKSEL3, > + 26, 2, wwdt1_sel_clks, > + ARRAY_SIZE(wwdt1_sel_clks)); > + hws[WWDT2_MUX] = ma35d1_clk_mux("wwdt2_mux", > + clk_base + REG_CLK_CLKSEL3, > + 30, 2, wwdt2_sel_clks, > + ARRAY_SIZE(wwdt2_sel_clks)); > + > + /* EPWM0~2 */ > + hws[EPWM0_GATE] = ma35d1_clk_gate("epwm0_gate", "pclk1", > + clk_base + REG_CLK_APBCLK1, 24); > + hws[EPWM1_GATE] = ma35d1_clk_gate("epwm1_gate", "pclk2", > + clk_base + REG_CLK_APBCLK1, 25); > + hws[EPWM2_GATE] = ma35d1_clk_gate("epwm2_gate", "pclk1", > + clk_base + REG_CLK_APBCLK1, 26); > + > + /* I2S0~1 */ > + hws[I2S0_MUX] = ma35d1_clk_mux("i2s0_mux", > + clk_base + REG_CLK_CLKSEL4, > + 12, 2, i2s0_sel_clks, > + ARRAY_SIZE(i2s0_sel_clks)); > + hws[I2S0_GATE] = ma35d1_clk_gate("i2s0_gate", "i2s0_mux", > + clk_base + REG_CLK_APBCLK2, 0); > + hws[I2S1_MUX] = ma35d1_clk_mux("i2s1_mux", > + clk_base + REG_CLK_CLKSEL4, > + 14, 2, i2s1_sel_clks, > + ARRAY_SIZE(i2s1_sel_clks)); > + hws[I2S1_GATE] = ma35d1_clk_gate("i2s1_gate", "i2s1_mux", > + clk_base + REG_CLK_APBCLK2, 1); > + > + /* SSMCC */ > + hws[SSMCC_GATE] = ma35d1_clk_gate("ssmcc_gate", "pclk3", > + clk_base + REG_CLK_APBCLK2, 2); > + > + /* SSPCC */ > + hws[SSPCC_GATE] = ma35d1_clk_gate("sspcc_gate", "pclk3", > + clk_base + REG_CLK_APBCLK2, 3); > + > + /* SPI0~3 */ > + hws[SPI0_MUX] = ma35d1_clk_mux("spi0_mux", > + clk_base + REG_CLK_CLKSEL4, > + 0, 2, spi0_sel_clks, > + ARRAY_SIZE(spi0_sel_clks)); > + hws[SPI0_GATE] = ma35d1_clk_gate("spi0_gate", "spi0_mux", > + clk_base + REG_CLK_APBCLK2, 4); > + hws[SPI1_MUX] = ma35d1_clk_mux("spi1_mux", > + clk_base + REG_CLK_CLKSEL4, > + 2, 2, spi1_sel_clks, > + ARRAY_SIZE(spi1_sel_clks)); > + hws[SPI1_GATE] = ma35d1_clk_gate("spi1_gate", "spi1_mux", > + clk_base + REG_CLK_APBCLK2, 5); > + hws[SPI2_MUX] = ma35d1_clk_mux("spi2_mux", > + clk_base + REG_CLK_CLKSEL4, > + 4, 2, spi2_sel_clks, > + ARRAY_SIZE(spi2_sel_clks)); > + hws[SPI2_GATE] = ma35d1_clk_gate("spi2_gate", "spi2_mux", > + clk_base + REG_CLK_APBCLK2, 6); > + hws[SPI3_MUX] = ma35d1_clk_mux("spi3_mux", > + clk_base + REG_CLK_CLKSEL4, > + 6, 2, spi3_sel_clks, > + ARRAY_SIZE(spi3_sel_clks)); > + hws[SPI3_GATE] = ma35d1_clk_gate("spi3_gate", "spi3_mux", > + clk_base + REG_CLK_APBCLK2, 7); > + > + /* ECAP0~2 */ > + hws[ECAP0_GATE] = ma35d1_clk_gate("ecap0_gate", "pclk1", > + clk_base + REG_CLK_APBCLK2, 8); > + hws[ECAP1_GATE] = ma35d1_clk_gate("ecap1_gate", "pclk2", > + clk_base + REG_CLK_APBCLK2, 9); > + hws[ECAP2_GATE] = ma35d1_clk_gate("ecap2_gate", "pclk1", > + clk_base + REG_CLK_APBCLK2, 10); > + > + /* QEI0~2 */ > + hws[QEI0_GATE] = ma35d1_clk_gate("qei0_gate", "pclk1", > + clk_base + REG_CLK_APBCLK2, 12); > + hws[QEI1_GATE] = ma35d1_clk_gate("qei1_gate", "pclk2", > + clk_base + REG_CLK_APBCLK2, 13); > + hws[QEI2_GATE] = ma35d1_clk_gate("qei2_gate", "pclk1", > + clk_base + REG_CLK_APBCLK2, 14); > + > + /* ADC */ > + hws[ADC_DIV] = ma35d1_reg_adc_clkdiv(dev, "adc_div", "pclk0", 0, > + clk_base + REG_CLK_CLKDIV4, > + 4, 17, 0x1ffff); > + hws[ADC_GATE] = ma35d1_clk_gate("adc_gate", "adc_div", > + clk_base + REG_CLK_APBCLK2, 24); > + > + /* EADC */ > + hws[EADC_DIV] = ma35d1_clk_divider_table("eadc_div", "pclk2", > + clk_base + REG_CLK_CLKDIV4, > + 0, 4, eadc_div_table); > + hws[EADC_GATE] = ma35d1_clk_gate("eadc_gate", "eadc_div", > + clk_base + REG_CLK_APBCLK2, 25); > + > + ret = of_clk_add_hw_provider(clk_node, of_clk_hw_onecell_get, > + ma35d1_hw_data); > + if (ret < 0) { > + dev_err(dev, "failed to register hws for MA35D1\n"); > + iounmap(clk_base); > + } > + return ret; > +} > + > +static const struct of_device_id ma35d1_clk_of_match[] = { > + { .compatible = "nuvoton,ma35d1-clk" }, > + { }, > +}; > +MODULE_DEVICE_TABLE(of, ma35d1_clk_of_match); > + > +static struct platform_driver ma35d1_clk_driver = { > + .probe = ma35d1_clocks_probe, > + .driver = { > + .name = "ma35d1-clk", > + .of_match_table = ma35d1_clk_of_match, > + }, > +}; > + > +static int __init ma35d1_clocks_init(void) > +{ > + return platform_driver_register(&ma35d1_clk_driver); > +} > + > +postcore_initcall(ma35d1_clocks_init); > + > +MODULE_AUTHOR("Chi-Fang Li<cfli0@xxxxxxxxxxx>"); Space missing. > +MODULE_DESCRIPTION("NUVOTON MA35D1 Clock Driver"); > +MODULE_LICENSE("GPL v2"); "GPL" is enough. > diff --git a/drivers/clk/nuvoton/clk-ma35d1.h b/drivers/clk/nuvoton/clk-ma35d1.h > new file mode 100644 > index 000000000000..faae5a17e425 > --- /dev/null > +++ b/drivers/clk/nuvoton/clk-ma35d1.h > @@ -0,0 +1,198 @@ > +/* SPDX-License-Identifier: GPL-2.0-only */ > +/* > + * Copyright (C) 2023 Nuvoton Technology Corp. > + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx> > + */ > + > +#ifndef __DRV_CLK_NUVOTON_MA35D1_H > +#define __DRV_CLK_NUVOTON_MA35D1_H > + > +#include <linux/clk.h> > +#include <linux/clkdev.h> > +#include <linux/clk-provider.h> > +#include <linux/spinlock.h> > +#include <linux/regmap.h> > +#include <linux/mfd/syscon.h> > +#include <linux/mfd/ma35d1-sys.h> > + > +enum ma35d1_pll_type { > + MA35D1_CAPLL, > + MA35D1_DDRPLL, > + MA35D1_APLL, > + MA35D1_EPLL, > + MA35D1_VPLL, > +}; > + > +enum ma35d1_pll_mode { > + VSIPLL_INTEGER_MODE, > + VSIPLL_FRACTIONAL_MODE, > + VSIPLL_SS_MODE, > +}; > + > +/* VSI-PLL CTL0~2 */ > +#define VSIPLL_CTL0 0x0 > +#define VSIPLL_CTL1 0x4 > +#define VSIPLL_CTL2 0x8 > + > +/* VSI-PLL Specification limits */ > +#define VSIPLL_FREF_MAX_FREQ 200000000UL > +#define VSIPLL_FREF_MIN_FREQ 1000000UL > +#define VSIPLL_FREFDIVM_MAX_FREQ 40000000UL > +#define VSIPLL_FREFDIVM_MIN_FREQ0 1000000UL > +#define VSIPLL_FREFDIVM_MIN_FREQ1 10000000UL > +#define VSIPLL_FCLK_MAX_FREQ 2400000000UL > +#define VSIPLL_FCLK_MIN_FREQ 600000000UL > +#define VSIPLL_FCLKO_MAX_FREQ 2400000000UL > +#define VSIPLL_FCLKO_MIN_FREQ 85700000UL > +#define VSIPLL_SPREAD_RANGE 194 > +#define VSIPLL_MODULATION_FREQ 50000 > + > +/* Clock Control Registers Offset */ > +#define REG_CLK_PWRCTL (0x00) Unnecessary parenthesis. > +#define REG_CLK_SYSCLK0 (0x04) > +#define REG_CLK_SYSCLK1 (0x08) > +#define REG_CLK_APBCLK0 (0x0C) > +#define REG_CLK_APBCLK1 (0x10) > +#define REG_CLK_APBCLK2 (0x14) > +#define REG_CLK_CLKSEL0 (0x18) > +#define REG_CLK_CLKSEL1 (0x1C) > +#define REG_CLK_CLKSEL2 (0x20) > +#define REG_CLK_CLKSEL3 (0x24) > +#define REG_CLK_CLKSEL4 (0x28) > +#define REG_CLK_CLKDIV0 (0x2C) > +#define REG_CLK_CLKDIV1 (0x30) > +#define REG_CLK_CLKDIV2 (0x34) > +#define REG_CLK_CLKDIV3 (0x38) > +#define REG_CLK_CLKDIV4 (0x3C) > +#define REG_CLK_CLKOCTL (0x40) > +#define REG_CLK_STATUS (0x50) > +#define REG_CLK_PLL0CTL0 (0x60) > +#define REG_CLK_PLL2CTL0 (0x80) > +#define REG_CLK_PLL2CTL1 (0x84) > +#define REG_CLK_PLL2CTL2 (0x88) > +#define REG_CLK_PLL3CTL0 (0x90) > +#define REG_CLK_PLL3CTL1 (0x94) > +#define REG_CLK_PLL3CTL2 (0x98) > +#define REG_CLK_PLL4CTL0 (0xA0) > +#define REG_CLK_PLL4CTL1 (0xA4) > +#define REG_CLK_PLL4CTL2 (0xA8) > +#define REG_CLK_PLL5CTL0 (0xB0) > +#define REG_CLK_PLL5CTL1 (0xB4) > +#define REG_CLK_PLL5CTL2 (0xB8) > +#define REG_CLK_CLKDCTL (0xC0) > +#define REG_CLK_CLKDSTS (0xC4) > +#define REG_CLK_CDUPB (0xC8) > +#define REG_CLK_CDLOWB (0xCC) > +#define REG_CLK_CKFLTRCTL (0xD0) > +#define REG_CLK_TESTCLK (0xF0) > +#define REG_CLK_PLLCTL (0x40) > + > +/* Constant Definitions for Clock Controller */ > +#define SMICPLLCTL0_FBDIV_POS (0) > +#define SMICPLLCTL0_FBDIV_MSK (0xfful << SMICPLLCTL0_FBDIV_POS) > +#define SMICPLLCTL0_INDIV_POS (8) > +#define SMICPLLCTL0_INDIV_MSK (0xful << SMICPLLCTL0_INDIV_POS) > +#define SMICPLLCTL0_OUTDIV_POS (12) > +#define SMICPLLCTL0_OUTDIV_MSK (0x3ul << SMICPLLCTL0_OUTDIV_POS) GENMASK() + remove _POS define completely. > +#define SMICPLLCTL0_PD_POS (16) > +#define SMICPLLCTL0_PD_MSK (0x1ul << SMICPLLCTL0_PD_POS) BIT() + remove _POS. Is this really a mask or a bit? I'd remove _MSK from the name (which is usually not that useful anyway even if it would be a multiple bit mask for real). > +#define SMICPLLCTL0_BP_POS (17) > +#define SMICPLLCTL0_BP_MSK (0x1ul << SMICPLLCTL0_BP_POS) BIT()? > +#define VSIPLLCTL0_FBDIV_POS (0) > +#define VSIPLLCTL0_FBDIV_MSK (0x7fful << VSIPLLCTL0_FBDIV_POS) > +#define VSIPLLCTL0_INDIV_POS (12) > +#define VSIPLLCTL0_INDIV_MSK (0x3ful << VSIPLLCTL0_INDIV_POS) > +#define VSIPLLCTL0_MODE_POS (18) > +#define VSIPLLCTL0_MODE_MSK (0x3ul << VSIPLLCTL0_MODE_POS) > +#define VSIPLLCTL0_SSRATE_POS (20) > +#define VSIPLLCTL0_SSRATE_MSK (0x7fful << VSIPLLCTL0_SSRATE_POS) > +#define VSIPLLCTL1_PD_POS (0) > +#define VSIPLLCTL1_PD_MSK (0x1ul << VSIPLLCTL1_PD_POS) > +#define VSIPLLCTL1_BP_POS (1) > +#define VSIPLLCTL1_BP_MSK (0x1ul << VSIPLLCTL1_BP_POS) > +#define VSIPLLCTL1_OUTDIV_POS (4) > +#define VSIPLLCTL1_OUTDIV_MSK (0x7ul << VSIPLLCTL1_OUTDIV_POS) > +#define VSIPLLCTL1_FRAC_POS (8) > +#define VSIPLLCTL1_FRAC_MSK (0xfffffful << VSIPLLCTL1_FRAC_POS) > +#define VSIPLLCTL2_SLOPE_POS (0) > +#define VSIPLLCTL2_SLOPE_MSK (0xfffffful << VSIPLLCTL2_SLOPE_POS) ...and more of them. -- i.