On Tue, Mar 24, 2020 at 03:18:17PM -0500, Suman Anna wrote: > The TI K3 family of SoCs typically have one or more dual-core Arm Cortex > R5F processor clusters/subsystems (R5FSS). This R5F subsystem/cluster > can be configured at boot time to be either run in a LockStep mode or in > an Asymmetric Multi Processing (AMP) fashion in Split-mode. This subsystem > has 64 KB each Tightly-Coupled Memory (TCM) internal memories for each > core split between two banks - TCMA and TCMB (further interleaved into > two banks). The subsystem does not have an MMU, but has a Region Address > Translater (RAT) module that is accessible only from the R5Fs for providing > translations between 32-bit CPU addresses into larger system bus addresses. > > Add a remoteproc driver to support this subsystem to be able to load and > boot the R5F cores primarily in LockStep mode. The code also includes the > base support for Split mode. Error Recovery and Power Management features > are not currently supported. Loading support includes the internal TCMs > and DDR. RAT support is left for a future patch, and as such the reserved > memory carveout regions are all expected to be using memory regions within > the first 2 GB. > > The R5F remote processors do not have an MMU, and so require fixed memory > carveout regions matching the firmware image addresses. Support for this > is provided by mandating multiple memory regions to be attached to the > remoteproc device. The first memory region will be used to serve as the > DMA pool for all dynamic allocations like the vrings and vring buffers. > The remaining memory regions are mapped into the kernel at device probe > time, and are used to provide address translations for firmware image > segments without the need for any RSC_CARVEOUT entries. Any firmware > image using memory outside of the supplied reserved memory carveout > regions will be errored out. > > The R5F processors on TI K3 SoCs require a specific sequence for booting > and shutting down the processors. This sequence is also dependent on the > mode (LockStep or Split) the R5F cluster is configured for. The R5F cores > have a Memory Protection Unit (MPU) that has a default configuration that > does not allow the cores to run out of DDR out of reset. This is resolved > by using the TCMs for boot-strapping code that applies the appropriate > executable permissions on desired DDR memory. The loading into the TCMs > requires that the resets be released first with the cores in halted state. > The Power Sleep Controller (PSC) module on K3 SoCs requires that the cores > be in WFI/WFE states with no active bus transactions before the cores can > be put back into reset. Support for this is provided by using the newly > introduced .prepare() and .unprepare() ops in the remoteproc core. The > .prepare() ops is invoked before any loading, and the .unprepare() ops > is invoked after the remoteproc resource cleanup. The R5F core resets > are deasserted in .prepare() and asserted in .unprepare(), and the cores > themselves are started and halted in .start() and .stop() ops. This > ensures symmetric usage and allows the R5F cores state machine to be > maintained properly between using the sysfs 'state' variable, bind/unbind > and regular module load/unload flows. > > The subsystem is represented as a single remoteproc in LockStep mode, and > as two remoteprocs in Split mode. The driver uses various TI-SCI interfaces > to talk to the System Controller (DMSC) for managing configuration, power > and reset management of these cores. IPC between the A53 cores and the R5 > cores is supported through the virtio rpmsg stack using shared memory and > OMAP Mailboxes. > > The AM65x SoCs typically have a single R5FSS in the MCU voltage domain. The > J721E SoCs uses a slightly revised IP and typically have three R5FSSs, with > one cluster present within the MCU voltage domain (MCU_R5FSS0), and the > remaining two clusters present in the MAIN voltage domain (MAIN_R5FSS0 and > MAIN_R5FSS1). The integration of these clusters on J721E SoC is also > slightly different in that these IPs do support an actual local reset line, > while they are a no-op on AM65x SoCs. > > Signed-off-by: Suman Anna <s-anna@xxxxxx> > --- > drivers/remoteproc/Kconfig | 16 + > drivers/remoteproc/Makefile | 1 + > drivers/remoteproc/ti_k3_r5_remoteproc.c | 1346 ++++++++++++++++++++++ > 3 files changed, 1363 insertions(+) > create mode 100644 drivers/remoteproc/ti_k3_r5_remoteproc.c > > diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig > index de3862c15fcc..073048b4c0fb 100644 > --- a/drivers/remoteproc/Kconfig > +++ b/drivers/remoteproc/Kconfig > @@ -224,6 +224,22 @@ config STM32_RPROC > > This can be either built-in or a loadable module. > > +config TI_K3_R5_REMOTEPROC > + tristate "TI K3 R5 remoteproc support" > + depends on ARCH_K3 > + select MAILBOX > + select OMAP2PLUS_MBOX > + help > + Say y here to support TI's R5F remote processor subsystems > + on various TI K3 family of SoCs through the remote processor > + framework. > + > + You want to say y here in order to offload some processing > + tasks to these processors > + > + It's safe to say N here if you're not interested in utilizing > + a slave processor > + > endif # REMOTEPROC > > endmenu > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > index e30a1b15fbac..00ba826818af 100644 > --- a/drivers/remoteproc/Makefile > +++ b/drivers/remoteproc/Makefile > @@ -28,3 +28,4 @@ qcom_wcnss_pil-y += qcom_wcnss_iris.o > obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o > obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o > obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o > +obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o > diff --git a/drivers/remoteproc/ti_k3_r5_remoteproc.c b/drivers/remoteproc/ti_k3_r5_remoteproc.c > new file mode 100644 > index 000000000000..655f8f14c37d > --- /dev/null > +++ b/drivers/remoteproc/ti_k3_r5_remoteproc.c > @@ -0,0 +1,1346 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * TI K3 R5F (MCU) Remote Processor driver > + * > + * Copyright (C) 2017-2020 Texas Instruments Incorporated - http://www.ti.com/ > + * Suman Anna <s-anna@xxxxxx> > + */ > + > +#include <linux/dma-mapping.h> > +#include <linux/err.h> > +#include <linux/interrupt.h> > +#include <linux/kernel.h> > +#include <linux/mailbox_client.h> > +#include <linux/module.h> > +#include <linux/of_device.h> > +#include <linux/of_address.h> > +#include <linux/of_reserved_mem.h> > +#include <linux/platform_device.h> > +#include <linux/pm_runtime.h> > +#include <linux/remoteproc.h> > +#include <linux/omap-mailbox.h> > +#include <linux/reset.h> > +#include <linux/soc/ti/ti_sci_protocol.h> > + > +#include "omap_remoteproc.h" > +#include "remoteproc_internal.h" > +#include "ti_sci_proc.h" > + > +/* This address can either be for ATCM or BTCM with the other at address 0x0 */ > +#define K3_R5_TCM_DEV_ADDR 0x41010000 > + > +/* R5 TI-SCI Processor Configuration Flags */ > +#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 > +#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 > +#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 > +#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 > +#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 > +#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 > +#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 > +#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 > + > +/* R5 TI-SCI Processor Control Flags */ > +#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 > + > +/* R5 TI-SCI Processor Status Flags */ > +#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 > +#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 > +#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 > +#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 > + > +/** > + * struct k3_r5_mem - internal memory structure > + * @cpu_addr: MPU virtual address of the memory region > + * @bus_addr: Bus address used to access the memory region > + * @dev_addr: Device address from remoteproc view > + * @size: Size of the memory region > + */ > +struct k3_r5_mem { > + void __iomem *cpu_addr; > + phys_addr_t bus_addr; > + u32 dev_addr; > + size_t size; > +}; > + > +enum cluster_mode { > + CLUSTER_MODE_SPLIT = 0, > + CLUSTER_MODE_LOCKSTEP, > +}; > + > +/** > + * struct k3_r5_cluster - K3 R5F Cluster structure > + * @dev: cached device pointer > + * @mode: Mode to configure the Cluster - Split or LockStep > + * @cores: list of R5 cores within the cluster > + */ > +struct k3_r5_cluster { > + struct device *dev; > + enum cluster_mode mode; > + struct list_head cores; > +}; > + > +/** > + * struct k3_r5_core - K3 R5 core structure > + * @elem: linked list item > + * @dev: cached device pointer > + * @rproc: rproc handle representing this core > + * @mem: internal memory regions data > + * @num_mems: number of internal memory regions > + * @reset: reset control handle > + * @tsp: TI-SCI processor control handle > + * @ti_sci: TI-SCI handle > + * @ti_sci_id: TI-SCI device identifier > + * @atcm_enable: flag to control ATCM enablement > + * @btcm_enable: flag to control BTCM enablement > + * @loczrama: flag to dictate which TCM is at device address 0x0 > + */ > +struct k3_r5_core { > + struct list_head elem; > + struct device *dev; > + struct rproc *rproc; > + struct k3_r5_mem *mem; > + int num_mems; > + struct reset_control *reset; > + struct ti_sci_proc *tsp; > + const struct ti_sci_handle *ti_sci; > + u32 ti_sci_id; > + u32 atcm_enable; > + u32 btcm_enable; > + u32 loczrama; > +}; > + > +/** > + * struct k3_r5_rproc - K3 remote processor state > + * @dev: cached device pointer > + * @cluster: cached pointer to parent cluster structure > + * @mbox: mailbox channel handle > + * @client: mailbox client to request the mailbox channel > + * @rproc: rproc handle > + * @core: cached pointer to r5 core structure being used > + * @rmem: reserved memory regions data > + * @num_rmems: number of reserved memory regions > + */ > +struct k3_r5_rproc { > + struct device *dev; > + struct k3_r5_cluster *cluster; > + struct mbox_chan *mbox; > + struct mbox_client client; > + struct rproc *rproc; > + struct k3_r5_core *core; > + struct k3_r5_mem *rmem; > + int num_rmems; > +}; > + > +/** > + * k3_r5_rproc_mbox_callback() - inbound mailbox message handler > + * @client: mailbox client pointer used for requesting the mailbox channel > + * @data: mailbox payload > + * > + * This handler is invoked by the OMAP mailbox driver whenever a mailbox > + * message is received. Usually, the mailbox payload simply contains > + * the index of the virtqueue that is kicked by the remote processor, > + * and we let remoteproc core handle it. > + * > + * In addition to virtqueue indices, we also have some out-of-band values > + * that indicate different events. Those values are deliberately very > + * large so they don't coincide with virtqueue indices. > + */ > +static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) > +{ > + struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, > + client); > + struct device *dev = kproc->rproc->dev.parent; > + const char *name = kproc->rproc->name; > + u32 msg = omap_mbox_message(data); > + > + dev_dbg(dev, "mbox msg: 0x%x\n", msg); > + > + switch (msg) { > + case RP_MBOX_CRASH: > + /* > + * remoteproc detected an exception, but error recovery is not > + * supported. So, just log this for now > + */ > + dev_err(dev, "K3 R5F rproc %s crashed\n", name); > + break; > + case RP_MBOX_ECHO_REPLY: > + dev_info(dev, "received echo reply from %s\n", name); > + break; > + default: > + /* silently handle all other valid messages */ > + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > + return; > + if (msg > kproc->rproc->max_notifyid) { > + dev_dbg(dev, "dropping unknown message 0x%x", msg); > + return; > + } > + /* msg contains the index of the triggered vring */ > + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) > + dev_dbg(dev, "no message was found in vqid %d\n", msg); > + } > +} > + > +/* kick a virtqueue */ > +static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) > +{ > + struct k3_r5_rproc *kproc = rproc->priv; > + struct device *dev = rproc->dev.parent; > + mbox_msg_t msg = (mbox_msg_t)vqid; > + int ret; > + > + /* send the index of the triggered virtqueue in the mailbox payload */ > + ret = mbox_send_message(kproc->mbox, (void *)msg); > + if (ret < 0) > + dev_err(dev, "failed to send mailbox message, status = %d\n", > + ret); > +} > + > +static int k3_r5_split_reset(struct k3_r5_core *core) > +{ > + int ret; > + > + ret = reset_control_assert(core->reset); > + if (ret) { > + dev_err(core->dev, "local-reset assert failed, ret = %d\n", > + ret); > + return ret; > + } > + > + ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, > + core->ti_sci_id); > + if (ret) { > + dev_err(core->dev, "module-reset assert failed, ret = %d\n", > + ret); > + if (reset_control_deassert(core->reset)) > + dev_warn(core->dev, "local-reset deassert back failed\n"); > + } > + > + return ret; > +} > + > +static int k3_r5_split_release(struct k3_r5_core *core) > +{ > + int ret; > + > + ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, > + core->ti_sci_id); > + if (ret) { > + dev_err(core->dev, "module-reset deassert failed, ret = %d\n", > + ret); > + return ret; > + } > + > + ret = reset_control_deassert(core->reset); > + if (ret) { > + dev_err(core->dev, "local-reset deassert failed, ret = %d\n", > + ret); > + if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, > + core->ti_sci_id)) > + dev_warn(core->dev, "module-reset assert back failed\n"); > + } > + > + return ret; > +} > + > +static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) > +{ > + struct k3_r5_core *core; > + int ret; > + > + /* assert local reset on all applicable cores */ > + list_for_each_entry(core, &cluster->cores, elem) { > + ret = reset_control_assert(core->reset); > + if (ret) { > + dev_err(core->dev, "local-reset assert failed, ret = %d\n", > + ret); > + core = list_prev_entry(core, elem); > + goto unroll_local_reset; > + } > + } > + > + /* disable PSC modules on all applicable cores */ > + list_for_each_entry(core, &cluster->cores, elem) { > + ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, > + core->ti_sci_id); > + if (ret) { > + dev_err(core->dev, "module-reset assert failed, ret = %d\n", > + ret); > + goto unroll_module_reset; > + } > + } > + > + return 0; > + > +unroll_module_reset: > + list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { > + if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, > + core->ti_sci_id)) > + dev_warn(core->dev, "module-reset assert back failed\n"); > + } > + core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); > +unroll_local_reset: > + list_for_each_entry_from_reverse(core, &cluster->cores, elem) { > + if (reset_control_deassert(core->reset)) > + dev_warn(core->dev, "local-reset deassert back failed\n"); > + } > + > + return ret; > +} > + > +static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) > +{ > + struct k3_r5_core *core; > + int ret; > + > + /* enable PSC modules on all applicable cores */ > + list_for_each_entry_reverse(core, &cluster->cores, elem) { > + ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, > + core->ti_sci_id); > + if (ret) { > + dev_err(core->dev, "module-reset deassert failed, ret = %d\n", > + ret); > + core = list_next_entry(core, elem); > + goto unroll_module_reset; > + } > + } > + > + /* deassert local reset on all applicable cores */ > + list_for_each_entry_reverse(core, &cluster->cores, elem) { > + ret = reset_control_deassert(core->reset); > + if (ret) { > + dev_err(core->dev, "module-reset deassert failed, ret = %d\n", > + ret); > + goto unroll_local_reset; > + } > + } > + > + return 0; > + > +unroll_local_reset: > + list_for_each_entry_continue(core, &cluster->cores, elem) { > + if (reset_control_assert(core->reset)) > + dev_warn(core->dev, "local-reset assert back failed\n"); > + } > + core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); > +unroll_module_reset: > + list_for_each_entry_from(core, &cluster->cores, elem) { > + if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, > + core->ti_sci_id)) > + dev_warn(core->dev, "module-reset assert back failed\n"); > + } > + > + return ret; > +} > + > +static inline int k3_r5_core_halt(struct k3_r5_core *core) > +{ > + return ti_sci_proc_set_control(core->tsp, > + PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); > +} > + > +static inline int k3_r5_core_run(struct k3_r5_core *core) > +{ > + return ti_sci_proc_set_control(core->tsp, > + 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); > +} > + > +/* > + * The R5F cores have controls for both a reset and a halt/run. The code > + * execution from DDR requires the initial boot-strapping code to be run > + * from the internal TCMs. This function is used to release the resets on > + * applicable cores to allow loading into the TCMs. The .prepare() ops is > + * invoked by remoteproc core before any firmware loading, and is followed > + * by the .start() ops after loading to actually let the R5 cores run. > + */ > +static int k3_r5_rproc_prepare(struct rproc *rproc) > +{ > + struct k3_r5_rproc *kproc = rproc->priv; > + struct k3_r5_cluster *cluster = kproc->cluster; > + struct k3_r5_core *core = kproc->core; > + struct device *dev = kproc->dev; > + int ret; > + > + ret = cluster->mode ? k3_r5_lockstep_release(cluster) : > + k3_r5_split_release(core); > + if (ret) > + dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", > + ret); > + > + return ret; > +} > + > +/* > + * This function implements the .unprepare() ops and performs the complimentary > + * operations to that of the .prepare() ops. The function is used to assert the > + * resets on all applicable cores for the rproc device (depending on LockStep > + * or Split mode). This completes the second portion of powering down the R5F > + * cores. The cores themselves are only halted in the .stop() ops, and the > + * .unprepare() ops is invoked by the remoteproc core after the remoteproc is > + * stopped. > + */ > +static int k3_r5_rproc_unprepare(struct rproc *rproc) > +{ > + struct k3_r5_rproc *kproc = rproc->priv; > + struct k3_r5_cluster *cluster = kproc->cluster; > + struct k3_r5_core *core = kproc->core; > + struct device *dev = kproc->dev; > + int ret; > + > + ret = cluster->mode ? k3_r5_lockstep_reset(cluster) : > + k3_r5_split_reset(core); > + if (ret) > + dev_err(dev, "unable to disable cores, ret = %d\n", ret); > + > + return ret; > +} > + > +/* > + * The R5F start sequence includes two different operations > + * 1. Configure the boot vector for R5F core(s) > + * 2. Unhalt/Run the R5F core(s) > + * > + * The sequence is different between LockStep and Split modes. The LockStep > + * mode requires the boot vector to be configured only for Core0, and then > + * unhalt both the cores to start the execution - Core1 needs to be unhalted > + * first followed by Core0. The Split-mode requires that Core0 to be maintained > + * always in a higher power state that Core1 (implying Core1 needs to be started > + * always only after Core0 is started). > + */ > +static int k3_r5_rproc_start(struct rproc *rproc) > +{ > + struct k3_r5_rproc *kproc = rproc->priv; > + struct k3_r5_cluster *cluster = kproc->cluster; > + struct mbox_client *client = &kproc->client; > + struct device *dev = kproc->dev; > + struct k3_r5_core *core; > + u32 boot_addr; > + int ret; > + > + client->dev = dev; > + client->tx_done = NULL; > + client->rx_callback = k3_r5_rproc_mbox_callback; > + client->tx_block = false; > + client->knows_txdone = false; > + > + kproc->mbox = mbox_request_channel(client, 0); > + if (IS_ERR(kproc->mbox)) { > + ret = -EBUSY; > + dev_err(dev, "mbox_request_channel failed: %ld\n", > + PTR_ERR(kproc->mbox)); > + return ret; > + } > + > + /* > + * Ping the remote processor, this is only for sanity-sake for now; > + * there is no functional effect whatsoever. > + * > + * Note that the reply will _not_ arrive immediately: this message > + * will wait in the mailbox fifo until the remote processor is booted. > + */ > + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); > + if (ret < 0) { > + dev_err(dev, "mbox_send_message failed: %d\n", ret); > + goto put_mbox; > + } > + > + boot_addr = rproc->bootaddr; > + /* TODO: add boot_addr sanity checking */ > + dev_err(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); > + > + /* boot vector need not be programmed for Core1 in LockStep mode */ > + core = kproc->core; > + ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); > + if (ret) > + goto put_mbox; > + > + /* unhalt/run all applicable cores */ > + if (cluster->mode) { > + list_for_each_entry_reverse(core, &cluster->cores, elem) { > + ret = k3_r5_core_run(core); > + if (ret) > + goto unroll_core_run; > + } > + } else { > + ret = k3_r5_core_run(core); > + if (ret) > + goto put_mbox; > + } > + > + return 0; > + > +unroll_core_run: > + list_for_each_entry_continue(core, &cluster->cores, elem) { > + if (k3_r5_core_halt(core)) > + dev_warn(core->dev, "core halt back failed\n"); > + } > +put_mbox: > + mbox_free_channel(kproc->mbox); > + return ret; > +} > + > +/* > + * The R5F stop function includes the following operations > + * 1. Halt R5F core(s) > + * > + * The sequence is different between LockStep and Split modes, and the order > + * of cores the operations are performed are also in general reverse to that > + * of the start function. The LockStep mode requires each operation to be > + * performed first on Core0 followed by Core1. The Split-mode requires that > + * Core0 to be maintained always in a higher power state that Core1 (implying > + * Core1 needs to be stopped first before Core0). > + * > + * Note that the R5F halt operation in general is not effective when the R5F > + * core is running, but is needed to make sure the core won't run after > + * deasserting the reset the subsequent time. The asserting of reset can > + * be done here, but is preferred to be done in the .unprepare() ops - this > + * maintains the symmetric behavior between the .start(), .stop(), .prepare() > + * and .unprepare() ops, and also balances them well between sysfs 'state' > + * flow and device bind/unbind or module removal. > + */ > +static int k3_r5_rproc_stop(struct rproc *rproc) > +{ > + struct k3_r5_rproc *kproc = rproc->priv; > + struct k3_r5_cluster *cluster = kproc->cluster; > + struct k3_r5_core *core = kproc->core; > + int ret; > + > + /* halt all applicable cores */ > + if (cluster->mode) { > + list_for_each_entry(core, &cluster->cores, elem) { > + ret = k3_r5_core_halt(core); > + if (ret) { > + core = list_prev_entry(core, elem); > + goto unroll_core_halt; > + } > + } > + } else { > + ret = k3_r5_core_halt(core); > + if (ret) > + goto out; > + } > + > + mbox_free_channel(kproc->mbox); > + > + return 0; > + > +unroll_core_halt: > + list_for_each_entry_from_reverse(core, &cluster->cores, elem) { > + if (k3_r5_core_run(core)) > + dev_warn(core->dev, "core run back failed\n"); > + } > +out: > + return ret; > +} > + > +/* > + * Internal Memory translation helper > + * > + * Custom function implementing the rproc .da_to_va ops to provide address > + * translation (device address to kernel virtual address) for internal RAMs > + * present in a DSP or IPU device). The translated addresses can be used > + * either by the remoteproc core for loading, or by any rpmsg bus drivers. > + */ > +static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) > +{ > + struct k3_r5_rproc *kproc = rproc->priv; > + struct k3_r5_core *core = kproc->core; > + void __iomem *va = NULL; > + phys_addr_t bus_addr; > + u32 dev_addr, offset; > + size_t size; > + int i; > + > + if (len == 0) > + return NULL; > + > + /* handle both R5 and SoC views of ATCM and BTCM */ > + for (i = 0; i < core->num_mems; i++) { > + bus_addr = core->mem[i].bus_addr; > + dev_addr = core->mem[i].dev_addr; > + size = core->mem[i].size; > + > + /* handle R5-view addresses of TCMs */ > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = core->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + > + /* handle SoC-view addresses of TCMs */ > + if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { > + offset = da - bus_addr; > + va = core->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + > + /* handle static DDR reserved memory regions */ > + for (i = 0; i < kproc->num_rmems; i++) { > + dev_addr = kproc->rmem[i].dev_addr; > + size = kproc->rmem[i].size; > + > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->rmem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + > + return NULL; > +} > + > +static const struct rproc_ops k3_r5_rproc_ops = { > + .prepare = k3_r5_rproc_prepare, > + .unprepare = k3_r5_rproc_unprepare, > + .start = k3_r5_rproc_start, > + .stop = k3_r5_rproc_stop, > + .kick = k3_r5_rproc_kick, > + .da_to_va = k3_r5_rproc_da_to_va, > +}; > + > +static const char *k3_r5_rproc_get_firmware(struct device *dev) > +{ > + const char *fw_name; > + int ret; > + > + ret = of_property_read_string(dev->of_node, "firmware-name", > + &fw_name); > + if (ret) { > + dev_err(dev, "failed to parse firmware-name property, ret = %d\n", > + ret); > + return ERR_PTR(ret); > + } > + > + return fw_name; > +} > + > +static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) > +{ > + struct k3_r5_cluster *cluster = kproc->cluster; > + struct device *dev = kproc->dev; > + struct k3_r5_core *core0, *core, *temp; > + u32 ctrl = 0, cfg = 0, stat = 0; > + u32 set_cfg = 0, clr_cfg = 0; > + u64 boot_vec = 0; > + bool lockstep_en; > + int ret; > + > + core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); > + core = cluster->mode ? core0 : kproc->core; The above two lines generated interesting mental gymnastic - please sprinkle with comments in order to disambiguate what is going on. > + > + ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, > + &stat); > + if (ret < 0) > + return ret; > + > + dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", > + boot_vec, cfg, ctrl, stat); > + > + lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); > + if (!lockstep_en && cluster->mode) { > + dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); > + cluster->mode = 0; > + } > + > + /* always enable ARM mode and set boot vector to 0 */ > + boot_vec = 0x0; > + if (core == core0) { > + clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; > + /* > + * LockStep configuration bit is Read-only on Split-mode _only_ > + * devices and system firmware will NACK any requests with the > + * bit configured, so program it only on permitted devices > + */ > + if (lockstep_en) > + clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; > + } > + > + if (core->atcm_enable) > + set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; > + else > + clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; > + > + if (core->btcm_enable) > + set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; > + else > + clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; > + > + if (core->loczrama) > + set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; > + else > + clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; > + > + if (cluster->mode) { > + /* > + * work around system firmware limitations to make sure both > + * cores are programmed symmetrically in LockStep. LockStep > + * and TEINIT config is only allowed with Core0. > + */ > + list_for_each_entry(temp, &cluster->cores, elem) { > + ret = k3_r5_core_halt(core); When I first read this I thought this was an error and what was really needed was k3_r5_core_halt(temp)... But no, this is correct because k3_r5_rproc_configure() is called for each core in the cluster in function k3_r5_cluster_rproc_init(). But then again why halting the same for each of the cores found in the system? So something seems wrong here. Either call k3_r5_core_halt(temp) or move k3_r5_core_halt(core) outside of the if (cluster->mode) to avoid more confusion. > + if (ret) > + goto out; > + > + if (temp != core) { > + clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; > + clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; > + } > + ret = ti_sci_proc_set_config(temp->tsp, boot_vec, > + set_cfg, clr_cfg); > + if (ret) > + goto out; > + } > + > + set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; > + clr_cfg = 0; > + ret = ti_sci_proc_set_config(core->tsp, boot_vec, > + set_cfg, clr_cfg); > + } else { > + ret = k3_r5_core_halt(core); > + if (ret) > + goto out; > + > + ret = ti_sci_proc_set_config(core->tsp, boot_vec, > + set_cfg, clr_cfg); > + } > + > +out: > + return ret; > +} > + > +static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + struct device_node *np = dev->of_node; > + struct device_node *rmem_np; > + struct reserved_mem *rmem; > + int num_rmems; > + int ret, i; > + > + num_rmems = of_property_count_elems_of_size(np, "memory-region", > + sizeof(phandle)); > + if (num_rmems <= 0) { > + dev_err(dev, "device does not have reserved memory regions, ret = %d\n", > + num_rmems); > + return -EINVAL; > + } > + if (num_rmems < 2) { > + dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n", > + num_rmems); > + return -EINVAL; > + } > + > + /* use reserved memory region 0 for vring DMA allocations */ > + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > + if (ret) { > + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", > + ret); > + return ret; > + } > + > + num_rmems--; > + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); > + if (!kproc->rmem) { > + ret = -ENOMEM; > + goto release_rmem; > + } > + > + /* use remaining reserved memory regions for static carveouts */ > + for (i = 0; i < num_rmems; i++) { > + rmem_np = of_parse_phandle(np, "memory-region", i + 1); > + if (!rmem_np) { > + ret = -EINVAL; > + goto unmap_rmem; > + } > + > + rmem = of_reserved_mem_lookup(rmem_np); > + if (!rmem) { > + of_node_put(rmem_np); > + ret = -EINVAL; > + goto unmap_rmem; > + } > + of_node_put(rmem_np); > + > + kproc->rmem[i].bus_addr = rmem->base; > + /* 64-bit address regions currently not supported */ > + kproc->rmem[i].dev_addr = (u32)rmem->base; > + kproc->rmem[i].size = rmem->size; > + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); > + if (!kproc->rmem[i].cpu_addr) { > + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", > + i + 1, &rmem->base, &rmem->size); > + ret = -ENOMEM; > + goto unmap_rmem; > + } > + > + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + i + 1, &kproc->rmem[i].bus_addr, > + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, > + kproc->rmem[i].dev_addr); > + } > + kproc->num_rmems = num_rmems; > + > + return 0; > + > +unmap_rmem: > + for (i--; i >= 0; i--) { > + if (kproc->rmem[i].cpu_addr) > + iounmap(kproc->rmem[i].cpu_addr); > + } > + kfree(kproc->rmem); > +release_rmem: > + of_reserved_mem_device_release(dev); > + return ret; > +} > + > +static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) > +{ > + int i; > + > + for (i = 0; i < kproc->num_rmems; i++) > + iounmap(kproc->rmem[i].cpu_addr); > + kfree(kproc->rmem); > + > + of_reserved_mem_device_release(kproc->dev); > +} > + > +static int k3_r5_cluster_rproc_init(struct platform_device *pdev) > +{ > + struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); > + struct device *dev = &pdev->dev; > + struct k3_r5_rproc *kproc; > + struct k3_r5_core *core, *core1; > + struct device *cdev; > + const char *fw_name; > + struct rproc *rproc; > + int ret; > + > + core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); > + list_for_each_entry(core, &cluster->cores, elem) { > + cdev = core->dev; > + fw_name = k3_r5_rproc_get_firmware(cdev); > + if (IS_ERR(fw_name)) { > + ret = PTR_ERR(fw_name); > + goto out; > + } > + > + rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, > + fw_name, sizeof(*kproc)); > + if (!rproc) { > + ret = -ENOMEM; > + goto out; > + } > + > + /* K3 R5s have a Region Address Translator (RAT) but no MMU */ > + rproc->has_iommu = false; > + /* error recovery is not supported at present */ > + rproc->recovery_disabled = true; > + > + kproc = rproc->priv; > + kproc->cluster = cluster; > + kproc->core = core; > + kproc->dev = cdev; > + kproc->rproc = rproc; > + core->rproc = rproc; > + > + ret = k3_r5_rproc_configure(kproc); > + if (ret) { > + dev_err(dev, "initial configure failed, ret = %d\n", > + ret); > + goto err_config; > + } > + > + ret = k3_r5_reserved_mem_init(kproc); > + if (ret) { > + dev_err(dev, "reserved memory init failed, ret = %d\n", > + ret); > + goto err_config; > + } > + > + ret = rproc_add(rproc); > + if (ret) { > + dev_err(dev, "rproc_add failed, ret = %d\n", ret); > + goto err_add; > + } > + > + /* create only one rproc in lockstep mode */ > + if (cluster->mode) Here and throughout the file, please use the cluster mode enumeration in order to improve readability, i.e if (cluster->mode == CLUSTER_MODE_LOCKSTEP) > + break; > + } > + > + return 0; > + > +err_split: > + rproc_del(rproc); > +err_add: > + k3_r5_reserved_mem_exit(kproc); > +err_config: > + rproc_free(rproc); > + core->rproc = NULL; > +out: > + /* undo core0 upon any failures on core1 in split-mode */ > + if (!cluster->mode && core == core1) { > + core = list_prev_entry(core, elem); > + rproc = core->rproc; > + kproc = rproc->priv; > + goto err_split; > + } > + return ret; > +} > + > +static int k3_r5_cluster_rproc_exit(struct platform_device *pdev) > +{ > + struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); > + struct k3_r5_rproc *kproc; > + struct k3_r5_core *core; > + struct rproc *rproc; > + > + /* > + * lockstep mode has only one rproc associated with first core, whereas > + * split-mode has two rprocs associated with each core, and requires > + * that core1 be powered down first > + */ > + core = cluster->mode ? > + list_first_entry(&cluster->cores, struct k3_r5_core, elem) : > + list_last_entry(&cluster->cores, struct k3_r5_core, elem); > + > + list_for_each_entry_from_reverse(core, &cluster->cores, elem) { > + rproc = core->rproc; > + kproc = rproc->priv; > + > + rproc_del(rproc); > + > + k3_r5_reserved_mem_exit(kproc); > + > + rproc_free(rproc); > + core->rproc = NULL; > + } > + > + return 0; > +} > + > +static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, > + struct k3_r5_core *core) > +{ > + static const char * const mem_names[] = {"atcm", "btcm"}; > + struct device *dev = &pdev->dev; > + struct resource *res; > + int num_mems; > + int i, ret; > + > + num_mems = ARRAY_SIZE(mem_names); > + core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); > + if (!core->mem) > + return -ENOMEM; > + > + for (i = 0; i < num_mems; i++) { > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > + mem_names[i]); > + if (!res) { > + dev_err(dev, "found no memory resource for %s\n", > + mem_names[i]); > + ret = -EINVAL; > + goto fail; > + } > + if (!devm_request_mem_region(dev, res->start, > + resource_size(res), > + dev_name(dev))) { > + dev_err(dev, "could not request %s region for resource\n", > + mem_names[i]); > + ret = -EBUSY; > + goto fail; > + } > + > + /* > + * TCMs are designed in general to support RAM-like backing > + * memories. So, map these as Normal Non-Cached memories. This > + * also avoids/fixes any potential alignment faults due to > + * unaligned data accesses when using memcpy() or memset() > + * functions (normally seen with device type memory). > + */ > + core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, > + resource_size(res)); > + if (IS_ERR(core->mem[i].cpu_addr)) { > + dev_err(dev, "failed to map %s memory\n", mem_names[i]); > + ret = PTR_ERR(core->mem[i].cpu_addr); > + devm_release_mem_region(dev, res->start, > + resource_size(res)); > + goto fail; > + } > + core->mem[i].bus_addr = res->start; > + > + /* > + * TODO: > + * The R5F cores can place ATCM & BTCM anywhere in its address > + * based on the corresponding Region Registers in the System > + * Control coprocessor. For now, place ATCM and BTCM at > + * addresses 0 and 0x41010000 (same as the bus address on AM65x > + * SoCs) based on loczrama setting > + */ > + if (!strcmp(mem_names[i], "atcm")) { > + core->mem[i].dev_addr = core->loczrama ? > + 0 : K3_R5_TCM_DEV_ADDR; > + } else { > + core->mem[i].dev_addr = core->loczrama ? > + K3_R5_TCM_DEV_ADDR : 0; > + } > + core->mem[i].size = resource_size(res); > + > + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + mem_names[i], &core->mem[i].bus_addr, > + core->mem[i].size, core->mem[i].cpu_addr, > + core->mem[i].dev_addr); > + } > + core->num_mems = num_mems; > + > + return 0; > + > +fail: > + for (i--; i >= 0; i--) { > + devm_iounmap(dev, core->mem[i].cpu_addr); > + devm_release_mem_region(dev, core->mem[i].bus_addr, > + core->mem[i].size); > + } > + if (core->mem) > + devm_kfree(dev, core->mem); Since the devm_ API has been used for memory allocation all this should be called automatically when of_platform_depopulate() is called. > + return ret; > +} > + > +static > +struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, > + const struct ti_sci_handle *sci) > +{ > + struct ti_sci_proc *tsp; > + u32 temp[2]; > + int ret; > + > + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", > + temp, 2); > + if (ret < 0) > + return ERR_PTR(ret); > + > + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); Here @dev is available, I would just call devm_kzalloc() and get rid of the kfree() in the error path of k3_r5_core_of_init() and k3_r5_core_of_exit(). > + if (!tsp) > + return ERR_PTR(-ENOMEM); > + > + tsp->dev = dev; > + tsp->sci = sci; > + tsp->ops = &sci->ops.proc_ops; > + tsp->proc_id = temp[0]; > + tsp->host_id = temp[1]; > + > + return tsp; > +} > + > +static int k3_r5_core_of_init(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + struct k3_r5_core *core; > + int ret, ret1; > + > + core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); > + if (!core) > + return -ENOMEM; > + > + core->dev = dev; > + core->atcm_enable = 0; > + core->btcm_enable = 1; > + core->loczrama = 1; Please add a comment that justifies the selection of default value. Otherwise this looks very esoteric. > + > + ret = of_property_read_u32(np, "atcm-enable", &core->atcm_enable); > + if (ret < 0 && ret != -EINVAL) { > + dev_err(dev, "invalid format for atcm-enable, ret = %d\n", ret); > + goto err_of; > + } > + > + ret = of_property_read_u32(np, "btcm-enable", &core->btcm_enable); > + if (ret < 0 && ret != -EINVAL) { > + dev_err(dev, "invalid format for btcm-enable, ret = %d\n", ret); > + goto err_of; > + } > + > + ret = of_property_read_u32(np, "loczrama", &core->loczrama); > + if (ret < 0 && ret != -EINVAL) { > + dev_err(dev, "invalid format for loczrama, ret = %d\n", ret); > + goto err_of; > + } > + > + core->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); > + if (IS_ERR(core->ti_sci)) { > + ret = PTR_ERR(core->ti_sci); > + if (ret != -EPROBE_DEFER) { > + dev_err(dev, "failed to get ti-sci handle, ret = %d\n", > + ret); > + } > + core->ti_sci = NULL; > + goto err_of; > + } > + > + ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); > + if (ret) { > + dev_err(dev, "missing 'ti,sci-dev-id' property\n"); > + goto err_sci_id; > + } > + > + core->reset = reset_control_get_exclusive(dev, NULL); > + if (IS_ERR(core->reset)) { > + ret = PTR_ERR(core->reset); > + if (ret != -EPROBE_DEFER) { > + dev_err(dev, "failed to get reset handle, ret = %d\n", > + ret); > + } > + goto err_sci_id; > + } > + > + core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); > + if (IS_ERR(core->tsp)) { > + dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", > + ret); > + ret = PTR_ERR(core->tsp); > + goto err_sci_proc; > + } > + > + ret = ti_sci_proc_request(core->tsp); > + if (ret < 0) { > + dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); > + goto err_proc; > + } > + > + ret = k3_r5_core_of_get_internal_memories(pdev, core); > + if (ret) { > + dev_err(dev, "failed to get internal memories, ret = %d\n", > + ret); > + goto err_intmem; > + } > + > + platform_set_drvdata(pdev, core); > + > + return 0; > + > +err_intmem: > + ret1 = ti_sci_proc_release(core->tsp); > + if (ret1) > + dev_err(dev, "failed to release proc, ret1 = %d\n", ret1); > +err_proc: > + kfree(core->tsp); > +err_sci_proc: > + reset_control_put(core->reset); > +err_sci_id: > + ret1 = ti_sci_put_handle(core->ti_sci); > + if (ret1) > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); s/"ret = %d"/"ret1 = %d" > +err_of: > + devm_kfree(dev, core); Same comment as above, this should be called automatically. > + return ret; > +} > + > +/* > + * free the resources explicitly since driver model is not being used > + * for the child R5F devices > + */ > +static int k3_r5_core_of_exit(struct platform_device *pdev) > +{ > + struct k3_r5_core *core = platform_get_drvdata(pdev); > + struct device *dev = &pdev->dev; > + int i, ret; > + > + for (i = 0; i < core->num_mems; i++) { > + devm_release_mem_region(dev, core->mem[i].bus_addr, > + core->mem[i].size); > + devm_iounmap(dev, core->mem[i].cpu_addr); > + } > + if (core->mem) > + devm_kfree(dev, core->mem); > + > + ret = ti_sci_proc_release(core->tsp); > + if (ret) > + dev_err(dev, "failed to release proc, ret = %d\n", ret); > + > + kfree(core->tsp); > + reset_control_put(core->reset); > + > + ret = ti_sci_put_handle(core->ti_sci); > + if (ret) > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); > + > + platform_set_drvdata(pdev, NULL); > + devm_kfree(dev, core); Same comment regarding the devm_ API, this should be called automatically. I will continue tomorrow, Mathieu > + > + return ret; > +} > + > +static int k3_r5_cluster_of_init(struct platform_device *pdev) > +{ > + struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + struct platform_device *cpdev; > + struct device_node *child; > + struct k3_r5_core *core, *temp; > + int ret; > + > + for_each_available_child_of_node(np, child) { > + cpdev = of_find_device_by_node(child); > + if (!cpdev) { > + ret = -ENODEV; > + dev_err(dev, "could not get R5 core platform device\n"); > + goto fail; > + } > + > + ret = k3_r5_core_of_init(cpdev); > + if (ret) { > + dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", > + ret); > + put_device(&cpdev->dev); > + goto fail; > + } > + > + core = platform_get_drvdata(cpdev); > + put_device(&cpdev->dev); > + list_add_tail(&core->elem, &cluster->cores); > + } > + > + return 0; > + > +fail: > + list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { > + list_del(&core->elem); > + cpdev = to_platform_device(core->dev); > + if (k3_r5_core_of_exit(cpdev)) > + dev_err(dev, "k3_r5_core_of_exit cleanup failed\n"); > + } > + return ret; > +} > + > +static int k3_r5_cluster_of_exit(struct platform_device *pdev) > +{ > + struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); > + struct device *dev = &pdev->dev; > + struct platform_device *cpdev; > + struct k3_r5_core *core, *temp; > + int ret; > + > + list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { > + list_del(&core->elem); > + cpdev = to_platform_device(core->dev); > + ret = k3_r5_core_of_exit(cpdev); > + if (ret) { > + dev_err(dev, "k3_r5_core_of_exit failed, ret = %d\n", > + ret); > + break; > + } > + } > + > + return ret; > +} > + > +static int k3_r5_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + struct k3_r5_cluster *cluster; > + int ret, ret1; > + int num_cores; > + > + cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); > + if (!cluster) > + return -ENOMEM; > + > + cluster->dev = dev; > + cluster->mode = CLUSTER_MODE_LOCKSTEP; > + INIT_LIST_HEAD(&cluster->cores); > + > + ret = of_property_read_u32(np, "lockstep-mode", &cluster->mode); > + if (ret < 0 && ret != -EINVAL) { > + dev_err(dev, "invalid format for lockstep-mode, ret = %d\n", > + ret); > + return ret; > + } > + > + num_cores = of_get_available_child_count(np); > + if (num_cores != 2) { > + dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n", > + num_cores); > + return -ENODEV; > + } > + > + platform_set_drvdata(pdev, cluster); > + > + dev_dbg(dev, "creating child devices for R5F cores\n"); > + ret = of_platform_populate(np, NULL, NULL, dev); > + if (ret) { > + dev_err(dev, "of_platform_populate failed, ret = %d\n", ret); > + return ret; > + } > + > + ret = k3_r5_cluster_of_init(pdev); > + if (ret) { > + dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); > + goto fail_of; > + } > + > + ret = k3_r5_cluster_rproc_init(pdev); > + if (ret) { > + dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", > + ret); > + goto fail_rproc; > + } > + > + return 0; > + > +fail_rproc: > + ret1 = k3_r5_cluster_of_exit(pdev); > + if (ret1) > + dev_err(dev, "k3_r5_cluster_of_exit failed, ret = %d\n", ret1); > +fail_of: > + of_platform_depopulate(dev); > + return ret; > +} > + > +static int k3_r5_remove(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + int ret; > + > + ret = k3_r5_cluster_rproc_exit(pdev); > + if (ret) { > + dev_err(dev, "k3_r5_cluster_rproc_exit failed, ret = %d\n", > + ret); > + goto fail; > + } > + > + ret = k3_r5_cluster_of_exit(pdev); > + if (ret) { > + dev_err(dev, "k3_r5_cluster_of_exit failed, ret = %d\n", ret); > + goto fail; > + } > + > + dev_dbg(dev, "removing child devices for R5F cores\n"); > + of_platform_depopulate(dev); > + > +fail: > + return ret; > +} > + > +static const struct of_device_id k3_r5_of_match[] = { > + { .compatible = "ti,am654-r5fss", }, > + { .compatible = "ti,j721e-r5fss", }, > + { /* sentinel */ }, > +}; > +MODULE_DEVICE_TABLE(of, k3_r5_of_match); > + > +static struct platform_driver k3_r5_rproc_driver = { > + .probe = k3_r5_probe, > + .remove = k3_r5_remove, > + .driver = { > + .name = "k3_r5_rproc", > + .of_match_table = k3_r5_of_match, > + }, > +}; > + > +module_platform_driver(k3_r5_rproc_driver); > + > +MODULE_LICENSE("GPL v2"); > +MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); > +MODULE_AUTHOR("Suman Anna <s-anna@xxxxxx>"); > -- > 2.23.0 >