Smithsonian / USGS Weekly Volcanic Activity Report 28 October-3 November 2020

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



1-1-1-1-1-1-1-1-1-1-1-1-1-1


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

28 October-3 November 2020



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Bezymianny, Central Kamchatka (Russia)  | Karymsky,
Eastern Kamchatka (Russia)  | Klyuchevskoy, Central Kamchatka (Russia)  |
Korovin, Andreanof Islands (USA)



Ongoing Activity: Aira, Kyushu (Japan)  | Dukono, Halmahera (Indonesia)  |
Ebeko, Paramushir Island (Russia)  | Fuego, Guatemala  | Katmai, United
States  | Pacaya, Guatemala  | Santa Maria, Guatemala  | Semeru, Eastern
Java (Indonesia)  | Sheveluch, Central Kamchatka (Russia)  | Sinabung,
Indonesia  | Suwanosejima, Ryukyu Islands (Japan)  | Telica, Nicaragua





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Bezymianny  | Central Kamchatka (Russia)  | 55.972°N, 160.595°E  | Summit
elev. 2882 m



KVERT reported that a thermal anomaly over Bezymianny was identified in
satellite images during 22-24 and 27-29 October. The N part of the lava
dome was active and possibly advanced. The Aviation Color Code remained at
Yellow (the second lowest level on a four-color scale).



Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny had been
considered extinct. The modern volcano, much smaller in size than its
massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago
over a late-Pleistocene lava-dome complex and an ancestral edifice built
about 11,000-7000 years ago. Three periods of intensified activity have
occurred during the past 3000 years. The latest period, which was preceded
by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This
eruption, similar to that of St. Helens in 1980, produced a large
horseshoe-shaped crater that was formed by collapse of the summit and an
associated lateral blast. Subsequent episodic but ongoing lava-dome growth,
accompanied by intermittent explosive activity and pyroclastic flows, has
largely filled the 1956 crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit
elev. 1513 m



KVERT reported that during 23 and 25-26 October explosions at Karymsky
produced ash plumes that rose to 5 km (16,400 ft) a.s.l. and drifted 75 km
SE, NE, and NW. A thermal anomaly was identified in satellite images during
23-24, 26, and 28 October. The Aviation Color Code remained at Orange (the
second highest level on a four-color scale).



Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern
volcanic zone, is a symmetrical stratovolcano constructed within a
5-km-wide caldera that formed during the early Holocene. The caldera cuts
the south side of the Pleistocene Dvor volcano and is located outside the
north margin of the large mid-Pleistocene Polovinka caldera, which contains
the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding
Karymsky eruptions originated beneath Akademia Nauk caldera, located
immediately south. The caldera enclosing Karymsky formed about 7600-7700
radiocarbon years ago; construction of the stratovolcano began about 2000
years later. The latest eruptive period began about 500 years ago,
following a 2300-year quiescence. Much of the cone is mantled by lava flows
less than 200 years old. Historical eruptions have been vulcanian or
vulcanian-strombolian with moderate explosive activity and occasional lava
flows from the summit crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that Strombolian activity at Klyuchevskoy continued during
23-30 October and lava advanced down the Apakhonchich drainage on the SE
flank. Gas-and-steam emissions contained some ash. A large, bright thermal
anomaly was identified daily in satellite images. The Aviation Color Code
was raised to Orange (the second highest level on a four-color scale) on 8
October.



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Korovin  | Andreanof Islands (USA)  | 52.381°N, 174.166°W  | Summit elev.
1518 m



On 28 October AVO raised the Aviation Color Code and Volcano Alert Level
for Korovin to Yellow and Advisory, respectively, noting that activity was
above background levels. Discrete earthquakes were detected over the
previous two weeks and sulfur dioxide emissions were identified four times
in satellite data on 15, 20, and 26 October. Low-level seismicity continued
and no surficial activity was evident in cloudy or partly cloudy satellite
images through 3 November.



Geologic Summary. Korovin, the most frequently active volcano of the large
volcanic complex at the NE tip of Atka Island, contains a 1533-m-high
double summit with two craters located along a NW-SE line. The NW summit
has a small crater, but the 1-km-wide crater of the SE cone has an unusual,
open cylindrical vent of widely variable depth that sometimes contains a
crater lake or a high magma column. A fresh-looking cinder cone lies on the
flank of partially dissected Konia volcano, located on the SE flank. The
volcano is dominantly basaltic in composition, although some late-stage
dacitic lava flows are present on both Korovin and Konia.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 26 October-2 November incandescence from
Minamidake Crater (at Aira Calderaâ??s Sakurajima volcano) was visible
nightly. An eruption at 0620 on 30 October produced a plume that rose 1 km
above the crater rim. The Alert Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data and information from PVMBG the
Darwin VAAC reported that during 28 October-3 November ash plumes from
Dukono rose to 2.1 km (7,000 ft) a.s.l. and drifted in multiple directions.
The Alert Level remained at 2 (on a scale of 1-4), and the public was
warned to remain outside of the 2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 22-23, 25-26, and 28-29 October that sent
ash plumes up to 3.1 km (10,200 ft) a.s.l. and drifted W, NW, NE, and SE.
The Aviation Color Code remained at Orange (the second highest level on a
four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Fuego  | Guatemala  | 14.473°N, 90.88°W  | Summit elev. 3763 m



INSIVUMEH reported that 2-14 explosions were recorded per hour during 27
October-3 November at Fuego, generating ash plumes as high as 1.1 km above
the crater rim that drifted 10-25 km generally S, SW, and W. Shock waves
rattled buildings within 12 km of the summit. Incandescent material ejected
100-300 m high caused block avalanches in the Ceniza (SSW), Seca (W),
Trinidad (S), Taniluyá (SW), El Jute, Las Lajas (SE), and Honda drainages;
avalanches sometimes reached vegetated areas. Ashfall was reported during
30 October-3 November in several areas downwind including Morelia (9 km
SW), Panimaché I and II (8 km SW), Finca Palo Verde, La Rochela, Santa
Sofía (12 km SW), Ceylon, El Zapote (10 km S), and Sangre de Cristo (8 km
WSW).



Geologic Summary. Volcán Fuego, one of Central America's most active
volcanoes, is also one of three large stratovolcanoes overlooking
Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta,
lies between Fuego and Acatenango to the north. Construction of Meseta
dates back to about 230,000 years and continued until the late Pleistocene
or early Holocene. Collapse of Meseta may have produced the massive
Escuintla debris-avalanche deposit, which extends about 50 km onto the
Pacific coastal plain. Growth of the modern Fuego volcano followed,
continuing the southward migration of volcanism that began at the mostly
andesitic Acatenango. Eruptions at Fuego have become more mafic with time,
and most historical activity has produced basaltic rocks. Frequent vigorous
historical eruptions have been recorded since the onset of the Spanish era
in 1524, and have produced major ashfalls, along with occasional
pyroclastic flows and lava flows.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Katmai  | United States  | 58.28°N, 154.963°W  | Summit elev. 2047 m



On 31 October AVO reported that an ash cloud, resuspended by strong winds
in the vicinity of Katmai and the Valley of Ten Thousand Smokes, drifted SE
over the S part of Kodiak Island at an altitude up to 1.5 km (5,000 ft)
a.s.l. The ash was originally deposited during the Novarupta eruption in
1912. The Volcano Alert Level remained at Normal and the Aviation Color
Code remained at Green.



Geologic Summary. Prior to 1912, Mount Katmai was a compound stratovolcano
with four NE-SW-trending summits, most of which were truncated by caldera
collapse in that year. Two or more large explosive eruptions took place
from Mount Katmai during the late Pleistocene. Most of the two overlapping
pre-1912 Katmai volcanoes are Pleistocene in age, but Holocene lava flows
from a flank vent descend the SE flank of the SW stratovolcano into the
Katmai River canyon. Katmai was initially considered to be the source of
the Valley of Ten Thousand Smokes ash flow in 1912. However, the 3 x 4 km
wide caldera of 1912 is now known to have formed as a result of the
voluminous eruption at nearby Novarupta volcano. The steep walled young
caldera has a jagged rim that rises 500-1000 m above the caldera floor and
contains a 250-m-deep, still-rising lake. Lake waters have covered a small
post-collapse lava dome (Horseshoe Island) that was seen on the caldera
floor at the time of the initial ascent to the caldera rim in 1916.
Post-1912 glaciers have formed on a bench within Katmai caldera.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Pacaya  | Guatemala  | 14.382°N, 90.601°W  | Summit elev. 2569 m



INSIVUMEH reported that Strombolian activity and lava effusion continued at
Pacaya during 27 October-3 November. Explosions from the cone in Mackenney
Crater ejected material as high as 250 m above the vent. Lava flows were 20
m and 1 km long on the NE and SW flanks, respectively. The lava flow on the
NE flank was no longer active by 28 October, though parts of the SW-flank
lava flow continued to advance through 3 November.



Geologic Summary. Eruptions from Pacaya, one of Guatemala's most active
volcanoes, are frequently visible from Guatemala City, the nation's
capital. This complex basaltic volcano was constructed just outside the
southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A
cluster of dacitic lava domes occupies the southern caldera floor. The
post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro
Grande stratovolcanoes and the currently active Mackenney stratovolcano.
Collapse of Pacaya Viejo between 600 and 1500 years ago produced a
debris-avalanche deposit that extends 25 km onto the Pacific coastal plain
and left an arcuate somma rim inside which the modern Pacaya volcano
(Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on
the NW somma rim and was last active in the 19th century. During the past
several decades, activity has consisted of frequent strombolian eruptions
with intermittent lava flow extrusion that has partially filled in the
caldera moat and armored the flanks of Mackenney cone, punctuated by
occasional larger explosive eruptions that partially destroy the summit of
the growing young stratovolcano.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Santa Maria  | Guatemala  | 14.757°N, 91.552°W  | Summit elev. 3745 m



INSIVUMEH reported that during 27 October-3 November lava extrusion at
Santa María's Santiaguito lava-dome complex generated block-and-ash flows
that descended the W, SW, S, and SE flanks. Explosions generated ash plumes
that rose as high as 900 m above the summit; ash plumes drifted 1 km SW
during 27-28 and 30-31 October and as far as 10 km SW during 1-2 November.
The lava dome was incandescent most nights.



Geologic Summary. Symmetrical, forest-covered Santa María volcano is part
of a chain of large stratovolcanoes that rise above the Pacific coastal
plain of Guatemala. The sharp-topped, conical profile is cut on the SW
flank by a 1.5-km-wide crater. The oval-shaped crater extends from just
below the summit to the lower flank, and was formed during a catastrophic
eruption in 1902. The renowned Plinian eruption of 1902 that devastated
much of SW Guatemala followed a long repose period after construction of
the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito
lava-dome complex has been growing at the base of the 1902 crater since
1922. Compound dome growth at Santiaguito has occurred episodically from
four vents, with activity progressing W towards the most recent, Caliente.
Dome growth has been accompanied by almost continuous minor explosions,
with periodic lava extrusion, larger explosions, pyroclastic flows, and
lahars.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev.
3657 m



PVMBG that gray-and-white ash plumes from Semeru were recorded at 0521 on
29 October, at 0747 on 30 October, at 0509 on 1 November, and at 0519 on 2
November. The ash plumes rose 200-500 m above the summit and drifted S, SW,
and N. The Alert Level remained at 2 (on a scale of 1-4).



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 23-30 October. The Aviation Color Code remained at
Orange (the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Sinabung  | Indonesia  | 3.17°N, 98.392°E  | Summit elev. 2460 m



PVMBG reported that each day during 27 October-2 November avalanches
descended Sinabungâ??s E and SE flanks as far as 1 km. Pyroclastic flows
traveled 1-2.5 km down the same flanks almost daily. According to a news
article, an eruption at 0752 on 29 October produced an ash plume that rose
1.5 km and caused ashfall in areas within 10 km downwind, particularly in
Kabanjahe (13 km SE) and Berastagi (13 km E). An eruptive event at 2358 on
2 November generated an ash plume that rose 1.5 km and drifted E. The Alert
Level remained at 3 (on a scale of 1-4), with a general exclusion zone of 3
km and extensions to 5 km in the SE sector and 4 km in the NE sector.



Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene
stratovolcano with many lava flows on its flanks. The migration of summit
vents along a N-S line gives the summit crater complex an elongated form.
The youngest crater of this conical andesitic-to-dacitic edifice is at the
southern end of the four overlapping summit craters. The youngest deposit
is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at
740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric
activity was seen at the summit and upper flanks in 1912. No confirmed
historical eruptions were recorded prior to explosive eruptions during
August-September 2010 that produced ash plumes to 5 km above the summit.



Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/;

The Jakarta Post
https://www.thejakartapost.com/news/2020/10/29/mt-sinabung-erupts-again-spews-2000-meter-high-volcanic-ash-clouds.html





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported nighttime incandescence and intermittent eruptive activity at
Suwanosejimaâ??s Ontake Crater during 23-30 October. Eight explosions were
recorded; an explosion at 0204 on 24 October ejected bombs 300 m from the
crater and an explosion at 1710 on 28 October produced an ash plume that
rose 2 km above the crater rim. Ashfall was periodically reported in
Toshima village (4 km SSW). The Alert Level remained at 2 (on a 5-level
scale).



Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in
the northern Ryukyu Islands consists of an andesitic stratovolcano with two
historically active summit craters. The summit is truncated by a large
breached crater extending to the sea on the east flank that was formed by
edifice collapse. Suwanosejima, one of Japan's most frequently active
volcanoes, was in a state of intermittent strombolian activity from Otake,
the NE summit crater, that began in 1949 and lasted until 1996, after which
periods of inactivity lengthened. The largest historical eruption took
place in 1813-14, when thick scoria deposits blanketed residential areas,
and the SW crater produced two lava flows that reached the western coast.
At the end of the eruption the summit of Otake collapsed forming a large
debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which
extends to the eastern coast. The island remained uninhabited for about 70
years after the 1813-1814 eruption. Lava flows reached the eastern coast of
the island in 1884. Only about 50 people live on the island.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Telica  | Nicaragua  | 12.606°N, 86.84°W  | Summit elev. 1036 m



INETER reported that a series of three explosions at Telica began at 1910
on 29 October and ended at 2137. The events ejected rock fragments onto the
flanks and produced gas-and-ash plumes that rose as high as 1 km above the
crater rim and drifted W. Ashfall was reported in areas downwind including
the communities of El Bosque, Jacinto Baca (15 km WSW), Filiberto Morales
(15 km WSW), Carlos Huete, Linda Vista, Divino Niño (31 km W). Three
explosions produced gas-and-ash plumes that rose 250-600 m above the rim
during 30-31 October. A minor amount of ash fell on the flanks.



Geologic Summary. Telica, one of Nicaragua's most active volcanoes, has
erupted frequently since the beginning of the Spanish era. This volcano
group consists of several interlocking cones and vents with a general NW
alignment. Sixteenth-century eruptions were reported at symmetrical Santa
Clara volcano at the SW end of the group. However, its eroded and breached
crater has been covered by forests throughout historical time, and these
eruptions may have originated from Telica, whose upper slopes in contrast
are unvegetated. The steep-sided cone of Telica is truncated by a
700-m-wide double crater; the southern crater, the source of recent
eruptions, is 120 m deep. El Liston, immediately E, has several nested
craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE
of Telica, form a prominent geothermal area frequented by tourists, and
geothermal exploration has occurred nearby.



Source: Instituto Nicaragüense de Estudios Territoriales (INETER)
http://www.ineter.gob.ni/


1-1-1-1-1-1-1-1-1-1-1-1-1-1


==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - http://pdx.edu/

GVP - http://www.volcano.si.edu/

IAVCEI - https://www.iavceivolcano.org/



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.

==============================================================

------------------------------

End of Volcano Digest - 3 Nov 2020 to 4 Nov 2020 (#2020-106)
************************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux