3-3-3-3-3-3-3-3-3-3-3-3-3 From: "Kuhn, Sally" <KUHNS@xxxxxx> Smithsonian / USGS Weekly Volcanic Activity Report 3-9 June 2020 Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx) URL: https://volcano.si.edu/reports_weekly.cfm New Activity/Unrest: Cleveland, Chuginadak Island (USA) | Karymsky, Eastern Kamchatka (Russia) Ongoing Activity: Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Klyuchevskoy, Central Kamchatka (Russia) | Nevados de Chillan, Chile | Sabancaya, Peru | Sangay, Ecuador | Semeru, Eastern Java (Indonesia) | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Whakaari/White Island, North Island (New Zealand) The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network. Note that many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest Cleveland | Chuginadak Island (USA) | 52.825°N, 169.944°W | Summit elev. 1730 m AVO reported that the eruption at Cleveland on 1 June destroyed the January 2019 lava dome and ejected a large amount of material from the summit crater. Volcanic debris flows traveled about 2.9 km down the E flank and more than 2.7 km down the N flank. No significant volcanic activity was noted in often cloudy satellite views during 2-9 June; a steam plume was visible on 3 June. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. Geologic Summary. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks. Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/ Karymsky | Eastern Kamchatka (Russia) | 54.049°N, 159.443°E | Summit elev. 1513 m Based on satellite images KVERT reported that on 29 May, 31 May, and 2 June explosions at Karymsky generated ash plumes that rose to 4 km (13,100 ft) a.s.l. and drifted 380 km SW, SE, and E. A thermal anomaly was visible on 31 May and 2 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Ongoing Activity Aira | Kyushu (Japan) | 31.593°N, 130.657°E | Summit elev. 1117 m JMA reported that during 1-8 June incandescence from Minamidake Crater (at Aira Calderaâ??s Sakurajima volcano) was sometimes visible at night. An explosion at 0259 on 4 June produced a plume that rose 1.5 km above the crater rim and ejected material almost 2 km away from the crater. Vibrations from the explosion were detected at the Seto Observatory, 4 km from the crater. During field surveys on 4 and 8 June deposits of tephra (up to 5 cm in diameter) were observed in areas 4-5 km E, and large blocks had fallen 3 km SW; craters created from the impact of the blocks were about 6 m in dimeter and 2 m deep. An explosion at 0130 on 5 June generated a plume that rose 3.7 km above the rim. The Alert Level remained at 3 (on a 5-level scale). Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Dukono | Halmahera (Indonesia) | 1.693°N, 127.894°E | Summit elev. 1229 m Based on satellite and wind model data, and information from PVMBG the Darwin VAAC reported that during 3-5 and 9 June ash plumes from Dukono rose to 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted NW, SW, S, and NNE. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Sources: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml; Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Ebeko | Paramushir Island (Russia) | 50.686°N, 156.014°E | Summit elev. 1103 m Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 29-31 May and 1 June that sent ash plumes up to 4.5 km (14,800 ft) a.s.l. Ash plumes drifted E and S. A thermal anomaly over the volcano was identified in satellite images during 30 May and 1-2 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Klyuchevskoy | Central Kamchatka (Russia) | 56.056°N, 160.642°E | Summit elev. 4754 m KVERT reported that Strombolian activity at Klyuchevskoy was visible during 29 May-5 June along with a bright thermal anomaly identified in satellite images. A lava flow continued to advance down the Apakhonchich drainage on the SE flank. Gas-and-steam plumes with some ash drifted 465 km SE and E on 29 and 31 May, and 1 June. The Aviation Color Code remained at Orange. Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Nevados de Chillan | Chile | 36.868°S, 71.378°W | Summit elev. 3180 m SERNAGEOMIN reported that a long-period earthquake beneath Nevados de Chillán was recorded at 0417 on 6 June. An emission associated with the earthquake rose more than 760 m above the vent and drifted NE. Pyroclastic flows descended the NW, N, E, and SE flanks. The Alert Level remained at Yellow, the second lowest level on a four-color scale, and residents were reminded not to approach the crater within 3 km. ONEMI modified their Alert Level status on 19 March, noting that an Alert Level Yellow (the middle level on a three-color scale) was in place for the communities of Pinto and Coihueco, and that the public should stay at least 2 km away from the crater. Geologic Summary. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height. Source: Servicio Nacional de GeologÃa y MinerÃa (SERNAGEOMIN) http://www.sernageomin.cl/ Sabancaya | Peru | 15.787°S, 71.857°W | Summit elev. 5960 m Instituto GeofÃsico del Perú (IGP) reported that a daily average of 18 explosions occurred at Sabancaya during 1-7 June. Gas-and-ash plumes rose as high as 1.5 km above the summit and drifted E and SE. There were three thermal anomalies identified in satellite data, originating from the lava dome in the summit crater. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 12-km radius. Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750. Source: Instituto GeofÃsico del Perú (IGP) http://www.igp.gob.pe/ Sangay | Ecuador | 2.005°S, 78.341°W | Summit elev. 5286 m IG reported that in the evening of 8 June, through the next morning, an eruptive event at Sangay was characterized as the collapse of one or more lava-flow fronts. Pyroclastic flows descended the Volcán River on the SE flank, and based on thermal anomalies some reached the Upano River. The Washington VAAC stated that ash plumes drifted SW. Several regional communities downwind reported ashfall including Santa Elena (170 km W), Guayas (175 km W), Los RÃos, Chimborazo, and the Morona-Santiago province. The most significant ashfall occurred in Alausà (60 km WSW). The local seismic station stopped transmitting signals on 7 June, though stations located tens of kilometers N recorded signals from the event beginning around 2000 on 8 June and lasting several hours. Geologic Summary. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex. Source: Instituto GeofÃsico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ Semeru | Eastern Java (Indonesia) | 8.108°S, 112.922°E | Summit elev. 3657 m PVMBG reported that the eruption at Semeru continued during 1-7 June, though sometimes foggy conditions prevented visual confirmation. Dense white-to-gray plumes rose 100-400 m above the summit. Incandescent material from the ends of lava flows descended 200-400 m in the Kembar drainage (on the S flank), reaching a maximum distance of 1.6 km from the crater. The Alert Level remained at 2 (on a scale of 1-4), and the public was reminded to stay outside of the general 1-km radius from the summit and 4 km on the SSE flank. Geologic Summary. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Sheveluch | Central Kamchatka (Russia) | 56.653°N, 161.36°E | Summit elev. 3283 m KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 29 May-5 June. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Suwanosejima | Ryukyu Islands (Japan) | 29.638°N, 129.714°E | Summit elev. 796 m JMA reported that nighttime incandescence at Suwanosejimaâ??s Ontake Crater was occasionally visible during 29 May-5 June. An explosion at 0210 on 29 May produced an off-white plume that rose as high as 500 m above the crater rim. Large rocks were ejected 200 m above the rim. The Alert Level remained at 2 (on a 5-level scale). Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Whakaari/White Island | North Island (New Zealand) | 37.52°S, 177.18°E | Summit elev. 294 m On 9 June GeoNet reported that a short-lived gas pulse and accompanying minor uplift in the vent area at Whakaari/White Island was recorded the previous week. The activity was likely linked to new magma emplaced at a shallow depth. High temperatures (around 450 degrees Celsius) at the vent area continued to be recorded. A decline in gas flux was recorded on 3 June, lower than the high levels detected on 28 May, suggesting that the increase was short-lived. Recent rainfall increased steam emissions and some water has ponded on the crater floor. The Volcanic Alert Level remained at 2 and the Aviation Color Code remained at Yellow. Geologic Summary. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769. Source: GeoNet http://www.geonet.org.nz/ 3-3-3-3-3-3-3-3-3-3-3-3-3 ============================================================== Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI). ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - https://www.iavceivolcano.org/ To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx. To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments. ============================================================== ------------------------------ End of Volcano Digest - 9 Jun 2020 to 10 Jun 2020 (#2020-60) ************************************************************