Smithsonian / USGS Weekly Volcanic Activity Report 15-21 April 2020

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



2-2-2-2-2-2-2-2-2-2-2-2-2


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

15-21 April 2020


Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Karymsky, Eastern Kamchatka (Russia)  | Krakatau,
Indonesia  | Lokon-Empung, Sulawesi (Indonesia)  | Semeru, Eastern Java
(Indonesia)



Ongoing Activity: Aira, Kyushu (Japan)  | Asosan, Kyushu (Japan)  |
Bezymianny, Central Kamchatka (Russia)  | Dukono, Halmahera (Indonesia)  |
Ebeko, Paramushir Island (Russia)  | Klyuchevskoy, Central Kamchatka
(Russia)  | Kuchinoerabujima, Ryukyu Islands (Japan)  | Merapi, Central
Java (Indonesia)  | Nevados de Chillan, Chile  | Rincon de la Vieja, Costa
Rica  | Sabancaya, Peru  | Sheveluch, Central Kamchatka (Russia)  |
Shishaldin, Fox Islands (USA)  | Suwanosejima, Ryukyu Islands (Japan)  |
Whakaari/White Island, North Island (New Zealand)





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit
elev. 1513 m



KVERT reported that over the past few weeks a minor amount of ash was
present in Karymskyâ??s gas-and-steam plumes and trace ash deposits were
visible on the surrounding snow. A very weak thermal anomaly was identified
in satellite data on 6 April. The Tokyo VAAC reported that on 18 April an
ash plume rose to 1.5 km (5,000 ft) a.s.l. and drifted SE based on
satellite data and information from UHPP (Petropavlovsk-Kamchatsky
Airport). The Aviation Color Code was raised to Yellow (the second lowest
level on a four-color scale) on 19 April.



Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern
volcanic zone, is a symmetrical stratovolcano constructed within a
5-km-wide caldera that formed during the early Holocene. The caldera cuts
the south side of the Pleistocene Dvor volcano and is located outside the
north margin of the large mid-Pleistocene Polovinka caldera, which contains
the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding
Karymsky eruptions originated beneath Akademia Nauk caldera, located
immediately south. The caldera enclosing Karymsky formed about 7600-7700
radiocarbon years ago; construction of the stratovolcano began about 2000
years later. The latest eruptive period began about 500 years ago,
following a 2300-year quiescence. Much of the cone is mantled by lava flows
less than 200 years old. Historical eruptions have been vulcanian or
vulcanian-strombolian with moderate explosive activity and occasional lava
flows from the summit crater.



Sources: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php;

Tokyo Volcanic Ash Advisory Center (VAAC)
http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html





Krakatau  | Indonesia  | 6.102°S, 105.423°E  | Summit elev. 155 m



PVMBG reported that during 13-19 April dense gray eruption plumes from Anak
Krakatau rose as high as 50 m above the crater rim, and white plumes rose
25-100 m above the summit. Satellite data acquired on 15 April revealed new
lava flows from the 10-11 April eruption covering the vent and extending
the coastline W. The Alert Level remained at 2 (on a scale of 1-4), and the
public was warned to remain outside of the 2-km-radius hazard zone from the
crater.



Geologic Summary. The renowned volcano Krakatau (frequently misstated as
Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of
the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a
7-km-wide caldera. Remnants of this ancestral volcano are preserved in
Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan
volcanoes were formed, coalescing to create the pre-1883 Krakatau Island.
Caldera collapse during the catastrophic 1883 eruption destroyed Danan and
Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd
largest in Indonesia during historical time, caused more than 36,000
fatalities, most as a result of devastating tsunamis that swept the
adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km
across the Sunda Strait and reached the Sumatra coast. After a quiescence
of less than a half century, the post-collapse cone of Anak Krakatau (Child
of Krakatau) was constructed within the 1883 caldera at a point between the
former cones of Danan and Perbuwatan. Anak Krakatau has been the site of
frequent eruptions since 1927.



Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/; Simon Carn http://www.volcarno.com/





Lokon-Empung  | Sulawesi (Indonesia)  | 1.358°N, 124.792°E  | Summit elev.
1580 m



An increased number of volcanic earthquakes over a few days prompted PVMBG
to issue a VONA on 15 April and raise the Aviation Color Code for
Lokon-Empung to Yellow (the second lowest on a four-color scale). The
volcano Alert Level remained at 2 (on a scale of 1-4). Residents and
tourists were reminded not to approach the crater within a radius of 1.5 km.



Geologic Summary. The twin volcanoes Lokon and Empung, rising about 800 m
above the plain of Tondano, are among the most active volcanoes of
Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km
apart), has a flat, craterless top. The morphologically younger Empung
volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in
the 18th century, but all subsequent eruptions have originated from
Tompaluan, a 150 x 250 m wide double crater situated in the saddle between
the two peaks. Historical eruptions have primarily produced
small-to-moderate ash plumes that have occasionally damaged croplands and
houses, but lava-dome growth and pyroclastic flows have also occurred. A
ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3
km away.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev.
3657 m



PVMBG reported that the eruption at Semeru continued during 1-16 April.
Eruptive events produced gray ash plumes that rose 400-600 m above the
summit. Additionally, gray-to-white gas plumes from Jonggring-Seloko Crater
rose 200-400 m; incandescent material was ejected 10-20 m above the crater.
Incandescent lava flows traveled 500-1,000 m down the Kembar, Bang, and
Kobokan drainages (on the S flank). At 0608 on 17 April a pyroclastic flow
descended 2 km along the Bang drainage. Ash plumes drifted N, SE, and SW
during 15-16 and 20-21 April. The Alert Level remained at 2 (on a scale of
1-4), and the public was reminded to stay outside of the general 1-km
radius from the summit and 4 km on the SSE flank.



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/;

Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 13-20 April incandescence from Minamidake Crater
(at Aira Calderaâ??s Sakurajima volcano) was visible nightly. The seismic
network occasionally recorded very small eruptive events and three
explosions. Ash plumes rose as high as 2.5 km above the crater rim. The
sulfur dioxide emission rate was high at 1,700 and 2,000 tons/day on 14 and
17 April, respectively. The Alert Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that eruptive activity at Asosan was recorded during 13-20
April. Gray-white ash plumes rose 800-1,100 m above the crater rim and
caused ashfall in areas downwind. The sulfur dioxide emission rate was
somewhat high at 1,600 and 1,200 tons per day on 14 and 16 April,
respectively. The Alert Level remained at 2 (on a scale of 1-5).



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Bezymianny  | Central Kamchatka (Russia)  | 55.972°N, 160.595°E  | Summit
elev. 2882 m



KVERT reported that a thermal anomaly over Bezymianny was identified in
satellite images during 10-17 April. Gas-and-steam emissions persisted. The
Aviation Color Code remained at Yellow (the second lowest level on a
four-color scale).



Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny had been
considered extinct. The modern volcano, much smaller in size than its
massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago
over a late-Pleistocene lava-dome complex and an ancestral edifice built
about 11,000-7000 years ago. Three periods of intensified activity have
occurred during the past 3000 years. The latest period, which was preceded
by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This
eruption, similar to that of St. Helens in 1980, produced a large
horseshoe-shaped crater that was formed by collapse of the summit and an
associated lateral blast. Subsequent episodic but ongoing lava-dome growth,
accompanied by intermittent explosive activity and pyroclastic flows, has
largely filled the 1956 crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, the Darwin VAAC reported that
during 15-21 April ash plumes from Dukono rose to 2.1 km (7,000 ft) a.s.l.
and drifted in multiple directions. The Alert Level remained at 2 (on a
scale of 1-4), and the public was warned to remain outside of the 2-km
exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions on 13 April that sent ash plumes up to 2.5 km
(8,200 ft) a.s.l. Ash plumes drifted SE. The Aviation Color Code remained
at Orange (the second highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that Strombolian activity at Klyuchevskoy was visible during
10-17 April along with a bright thermal anomaly identified in satellite
images. Gas-and-steam plumes with some ash rose to 6 km (19,700 ft) a.s.l.
and drifted 200 km S and E on those same days. The Aviation Color Code
remained at Orange.



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Kuchinoerabujima  | Ryukyu Islands (Japan)  | 30.443°N, 130.217°E  | Summit
elev. 657 m



JMA reported that during 13-20 April very small eruptive events at
Kuchinoerabujimaâ??s Shindake Crater produced grayish-white plumes that rose
600 m above the crater rim. An event at 0147 on 20 April generated a
grayish-white plume that rose 800 m and drifted SE. The Alert Level
remained at 3 (the middle level on a scale of 1-5).



Geologic Summary. A group of young stratovolcanoes forms the eastern end of
the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu
Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones
were erupted from south to north, respectively, forming a composite cone
with multiple craters. The youngest cone, centrally-located Shindake,
formed after the NW side of Furudake was breached by an explosion. All
historical eruptions have occurred from Shindake, although a lava flow from
the S flank of Furudake that reached the coast has a very fresh morphology.
Frequent explosive eruptions have taken place from Shindake since 1840; the
largest of these was in December 1933. Several villages on the 4 x 12 km
island are located within a few kilometers of the active crater and have
suffered damage from eruptions.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Merapi  | Central Java (Indonesia)  | 7.54°S, 110.446°E  | Summit elev.
2910 m



PVMBG reported relatively quiet conditions at Merapi during 13-19 April.
White plumes of variable densities rose as high as 300 m above the crater
that had formed on 10 April. The Alert Level remained at 2 (on a scale of
1-4), and residents were warned to stay outside of the 3-km exclusion zone.



Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in
one of the world's most densely populated areas and dominates the landscape
immediately north of the major city of Yogyakarta. It is the youngest and
southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth
of Old Merapi during the Pleistocene ended with major edifice collapse
perhaps about 2000 years ago, leaving a large arcuate scarp cutting the
eroded older Batulawang volcano. Subsequently growth of the steep-sided
Young Merapi edifice, its upper part unvegetated due to frequent eruptive
activity, began SW of the earlier collapse scarp. Pyroclastic flows and
lahars accompanying growth and collapse of the steep-sided active summit
lava dome have devastated cultivated lands on the western-to-southern
flanks and caused many fatalities during historical time.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Nevados de Chillan  | Chile  | 36.868°S, 71.378°W  | Summit elev. 3180 m



ONEMI and SERNAGEOMIN reported that an explosive event at Nevados de
Chillánâ??s Nicanor Crater recorded at 1333 on 21 April was associated with a
long-period earthquake signal. The explosion produced a gas-and-ash plume
that rose 2.4 km above the vent and drifted SE. The Alert Level remained at
Yellow, the second lowest level on a four-color scale, and residents were
reminded not to approach the crater within 3 km. ONEMI maintained an Alert
Level Yellow (the middle level on a three-color scale) for the communities
of Pinto, Coihueco, and San Fabián, and stated that the public should stay
at least 3 km away from the crater on the SW flank and 5 km away on the ENE
flank.



Geologic Summary. The compound volcano of Nevados de Chillán is one of the
most active of the Central Andes. Three late-Pleistocene to Holocene
stratovolcanoes were constructed along a NNW-SSE line within three nested
Pleistocene calderas, which produced ignimbrite sheets extending more than
100 km into the Central Depression of Chile. The largest stratovolcano,
dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW
end of the group. Volcán Viejo (Volcán Chillán), which was the main active
vent during the 17th-19th centuries, occupies the SE end. The new Volcán
Nuevo lava-dome complex formed between 1906 and 1945 between the two
volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau
dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and
eventually exceeded its height.



Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN)
http://www.sernageomin.cl/;

Oficina Nacional de Emergencia-Ministerio del Interior (ONEMI)
http://www.onemi.cl/





Rincon de la Vieja  | Costa Rica  | 10.83°N, 85.324°W  | Summit elev. 1916 m



OVSICORI-UNA reported periodic hydrothermal explosions at Rincón de la
Vieja during 15-21 April. At 0306 on 15 April a phreatic eruption was
recorded by the seismic network; weather conditions prevented visual
confirmation, though local residents reported lahars in the Pénjamo,
Azufrada, and Azul rivers. A steam plume from a phreatic event at 0929 on
18 April rose 200 m above the crater rim. Several small events were
detected during the morning of 19 April but none produced plumes that rose
above the rim. At 1014 a phreatic eruption ejected water and sediment 300 m
above the crater rim and onto the flank, and produced a steam-and-gas plume
that rose 1.5 km above rim. A lahar followed the activity. During 20-21
April several low-energy puffs of gas-and-steam were recorded. A low-energy
event at 0626 on 21 April generated a steam plume that rose 1 km above the
crater rim.



Geologic Summary. Rincón de la Vieja, the largest volcano in NW Costa Rica,
is a remote volcanic complex in the Guanacaste Range. The volcano consists
of an elongated, arcuate NW-SE-trending ridge that was constructed within
the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed
on the south side. Sometimes known as the "Colossus of Guanacaste," it has
an estimated volume of 130 km3 and contains at least nine major eruptive
centers. Activity has migrated to the SE, where the youngest-looking
craters are located. The twin cone of 1916-m-high Santa María volcano, the
highest peak of the complex, is located at the eastern end of a smaller,
5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing
the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major
magmatic eruption. All subsequent eruptions, including numerous historical
eruptions possibly dating back to the 16th century, have been from the
prominent active crater containing a 500-m-wide acid lake located ENE of
Von Seebach crater.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m



Instituto Geofísico del Perú (IGP) reported that a daily average of 11
explosions occurred at Sabancaya during 13-19 April. Gas-and-ash plumes
rose as high as 3.9 km above the summit and drifted NW, S, and SE. There
were eight thermal anomalies identified in satellite data, originating from
the lava dome in the summit crater. The Alert Level remained at Orange (the
second highest level on a four-color scale) and the public were warned to
stay outside of a 12-km radius.



Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of
Hualca Hualca volcanoes, is the youngest of these volcanic centers and the
only one to have erupted in historical time. The oldest of the three,
Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene
age. The name Sabancaya (meaning "tongue of fire" in the Quechua language)
first appeared in records in 1595 CE, suggesting activity prior to that
date. Holocene activity has consisted of Plinian eruptions followed by
emission of voluminous andesitic and dacitic lava flows, which form an
extensive apron around the volcano on all sides but the south. Records of
historical eruptions date back to 1750.



Source: Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 10-17 April. The Aviation Color Code remained at
Orange (the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Shishaldin  | Fox Islands (USA)  | 54.756°N, 163.97°W  | Summit elev. 2857 m



On 16 April AVO reported that seismicity at Shishaldin had decreased during
the past two weeks, though it remained slightly above background levels.
Additionally, satellite images showed no new lava nor changes in the crater
area, and a decrease in surface temperatures. The Volcano Alert Level was
lowered to Advisory and the Aviation Color Code was lowered to Yellow.



Geologic Summary. The beautifully symmetrical Shishaldin is the highest and
one of the most active volcanoes of the Aleutian Islands. The
glacier-covered volcano is the westernmost of three large stratovolcanoes
along an E-W line in the eastern half of Unimak Island. The Aleuts named
the volcano Sisquk, meaning "mountain which points the way when I am lost."
A steam plume often rises from its small summit crater. Constructed atop an
older glacially dissected volcano, it is largely basaltic in composition.
Remnants of an older ancestral volcano are exposed on the W and NE sides at
1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its
NW flank, which is blanketed by massive aa lava flows. Frequent explosive
activity, primarily consisting of Strombolian ash eruptions from the small
summit crater, but sometimes producing lava flows, has been recorded since
the 18th century.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported that during 10-17 April incandescence from Suwanosejimaâ??s
Ontake Crater was visible nightly. Small eruptions occasionally occurred,
along with an explosion on 15 April, producing gray-white plumes that rose
as high as 1 km above the crater rim; plumes drifted N on 15 April.
Rumbling sounds were noted in a village 4 km SSW. The Alert Level remained
at 2 (on a 5-level scale).



Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in
the northern Ryukyu Islands consists of an andesitic stratovolcano with two
historically active summit craters. The summit of the volcano is truncated
by a large breached crater extending to the sea on the east flank that was
formed by edifice collapse. Suwanosejima, one of Japan's most frequently
active volcanoes, was in a state of intermittent strombolian activity from
Otake, the NE summit crater, that began in 1949 and lasted until 1996,
after which periods of inactivity lengthened. The largest historical
eruption took place in 1813-14, when thick scoria deposits blanketed
residential areas, and the SW crater produced two lava flows that reached
the western coast. At the end of the eruption the summit of Otake collapsed
forming a large debris avalanche and creating the horseshoe-shaped Sakuchi
caldera, which extends to the eastern coast. The island remained
uninhabited for about 70 years after the 1813-1814 eruption. Lava flows
reached the eastern coast of the island in 1884. Only about 50 people live
on the island.



Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/;

Tokyo Volcanic Ash Advisory Center (VAAC)
http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html





Whakaari/White Island  | North Island (New Zealand)  | 37.52°S, 177.18°E  |
Summit elev. 294 m



On 16 April GeoNet reported that data collected from Whakaari/White Island
came from instrumentation on the island only, including seismic stations,
webcams, and sulfur dioxide gas emission sensors; no overflights had been
conducted over the past three weeks. GeoNet concluded that there were no
significant changes in sulfur dioxide flux, seismicity remained low, and
the active vents area appeared unchanged since early March. High
temperatures from the vent area were apparent at night. The Volcanic Alert
Level remained at 2 and the Aviation Color Code remained at Yellow.



Geologic Summary. The uninhabited Whakaari/White Island is the 2 x 2.4 km
emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty
about 50 km offshore of North Island. The island consists of two
overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater
is open at sea level, with the recent activity centered about 1 km from the
shore close to the rear crater wall. Volckner Rocks, sea stacks that are
remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826
have included intermittent moderate phreatic, phreatomagmatic, and
Strombolian eruptions; activity there also forms a prominent part of Maori
legends. The formation of many new vents during the 19th and 20th centuries
caused rapid changes in crater floor topography. Collapse of the crater
wall in 1914 produced a debris avalanche that buried buildings and workers
at a sulfur-mining project. Explosive activity in December 2019 took place
while tourists were present, resulting in many fatalities. The official
government name Whakaari/White Island is a combination of the full Maori
name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island
(referencing the constant steam plume) given by Captain James Cook in 1769.



Source: GeoNet http://www.geonet.org.nz/




2-2-2-2-2-2-2-2-2-2-2-2-2



==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - http://pdx.edu/

GVP - http://www.volcano.si.edu/

IAVCEI - https://www.iavceivolcano.org/



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.



==============================================================

------------------------------

End of Volcano Digest - 15 Apr 2020 to 22 Apr 2020 (#2020-43)
*************************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux