Smithsonian / USGS Weekly Volcanic Activity Report 11-17 December 2019

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



6-6-6-6-6-6-6-6-6-6-6-6-6


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

11-17 December 2019



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm



New Activity/Unrest: Bezymianny, Central Kamchatka (Russia)  |
Nishinoshima, Japan  | Semisopochnoi, United States  | White Island, North
Island (New Zealand)



Ongoing Activity: Aira, Kyushu (Japan)  | Asosan, Kyushu (Japan)  | Dukono,
Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  | Karangetang,
Siau Island (Indonesia)  | Klyuchevskoy, Central Kamchatka (Russia)  |
Sangay, Ecuador  | Sangeang Api, Indonesia  | Sheveluch, Central Kamchatka
(Russia)  | Shishaldin, Fox Islands (USA)





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Bezymianny  | Central Kamchatka (Russia)  | 55.972°N, 160.595°E  | Summit
elev. 2882 m



Activity at Bezymianny began to increase at the beginning of December,
characterized by nighttime crater incandescence, strong fumarolic
emissions, a lava flow, and gradually increasing temperatures of a
satellite-detected thermal anomaly. KVERT increased the Aviation Color Code
to Orange (the second highest level on a four-color scale) on 13 December.



Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny had been
considered extinct. The modern volcano, much smaller in size than its
massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago
over a late-Pleistocene lava-dome complex and an ancestral edifice built
about 11,000-7000 years ago. Three periods of intensified activity have
occurred during the past 3000 years. The latest period, which was preceded
by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This
eruption, similar to that of St. Helens in 1980, produced a large
horseshoe-shaped crater that was formed by collapse of the summit and an
associated lateral blast. Subsequent episodic but ongoing lava-dome growth,
accompanied by intermittent explosive activity and pyroclastic flows, has
largely filled the 1956 crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Nishinoshima  | Japan  | 27.247°N, 140.874°E  | Summit elev. 25 m



The Japan Coast Guard (JCG) reported that during an overflight of
Nishinoshima on 15 December surveyors observed that explosions were
occurring from the main crater of the pyroclastic cone every second to
several seconds. Blocks were ejected as high as 300 m above the crater rim;
red hot blocks were scattered at the base of the cone. Gray plumes rose
from the crater, and lava continued flowing E into the sea. A new crater
had opened on the N flank of the cone and effused lava that flowed NW down
to the sea. JMA expanded the marine exclusion zone around the island to 2.5
km the next day.



Geologic Summary. The small island of Nishinoshima was enlarged when
several new islands coalesced during an eruption in 1973-74. Another
eruption that began offshore in 2013 completely covered the previous
exposed surface and enlarged the island again. Water discoloration has been
observed on several occasions since. The island is the summit of a massive
submarine volcano that has prominent satellitic peaks to the S, W, and NE.
The summit of the southern cone rises to within 214 m of the sea surface 9
km SSE.



Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/;

Japan Coast Guard http://www.kaiho.mlit.go.jp/index.html





Semisopochnoi  | United States  | 51.93°N, 179.58°E  | Summit elev. 1221 m



AVO reported that during 10-17 December activity at Semisopochnoi remained
elevated, with bursts of tremor and small explosions detected in both
seismic and infrasound data. An 80-km-long gas-and-steam plume possibly
containing ash was visible in satellite images during 11-12 December. The
Aviation Color Code remained at Orange and the Volcano Alert Level remained
at Watch.



Geologic Summary. Semisopochnoi, the largest subaerial volcano of the
western Aleutians, is 20 km wide at sea level and contains an 8-km-wide
caldera. It formed as a result of collapse of a low-angle, dominantly
basaltic volcano following the eruption of a large volume of dacitic
pumice. The high point of the island is 1221-m-high Anvil Peak, a
double-peaked late-Pleistocene cone that forms much of the island's
northern part. The three-peaked 774-m-high Mount Cerberus volcano was
constructed during the Holocene within the caldera. Each of the peaks
contains a summit crater; lava flows on the northern flank of Cerberus
appear younger than those on the southern side. Other post-caldera
volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the
caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake
in the NE part of the caldera. Most documented historical eruptions have
originated from Cerberus, although Coats (1950) considered that both
Sugarloaf and Lakeshore Cone within the caldera could have been active
during historical time.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





White Island  | North Island (New Zealand)  | 37.52°S, 177.18°E  | Summit
elev. 294 m



GeoNet reported that the deadly 9 December eruption at White island
modified the active crater area. The basin previously containing a hot
acidic lake was mostly filled by debris with numerous, isolated ponds after
the event. During overflights observers identified three main vents within
a 100-square-meter area. Volcanic tremor significantly increased at around
0400 on 11 December and was accompanied by vigorous steaming and localized
mud jetting from the active vent area. By the early evening tremor was at
the highest level recorded since the 2016 eruption. On 12 December the
Volcanic Alert Level was lowered to 2 (since no more eruptions had occurred
since 9 December), though the Aviation Color Code remained at Orange. Later
that day tremor levels decreased but remained very high compared to normal
levels. Energetic steam-and-mud bursts continued from the active vent area.
Gas emissions had increased compared to 10 December measurements. Tremor
levels continued to decline during 12-13 December and then significantly
dropped later on 13 December. During an overflight on 13 December observers
noted small-scale gas jetting and steam bursts from the active vents. High
heat flow was confirmed by a glow emanating from the vent area in overnight
webcam images during 12-15 December; high-temperature (more than 200
degrees Celsius) volcanic gas was being emitted at a high rate when
observed during an overflight on 15 December. GeoNet noted that data from
various measurements suggested a magma source not far below the surface,
possibly as shallow as tens of meters deep. According to the New Zealand
Police the death toll from the 9 December eruption was 15, with two people
still missing.



Geologic Summary. The uninhabited White Island, also know as Whakaari in
the Maori language, is the 2 x 2.4 km emergent summit of a 16 x 18 km
submarine volcano in the Bay of Plenty about 50 km offshore of North
Island. The island consists of two overlapping andesitic-to-dacitic
stratovolcanoes. The summit crater appears to be breached to the SE,
because the shoreline corresponds to the level of several notches in the SE
crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome,
lie 5 km NW. Descriptions of eruptions since 1826 have included
intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions;
activity there also forms a prominent part of Maori legends. Formation of
many new vents during the 19th and 20th centuries has produced rapid
changes in crater floor topography. Collapse of the crater wall in 1914
produced a debris avalanche that buried buildings and workers at a
sulfur-mining project. Explosive activity in December 2019 took place while
tourists were present, resulting in many fatalities.



Sources: GeoNet http://www.geonet.org.nz/; New Zealand Police
https://www.police.govt.nz/





Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that incandescence from Minamidake Crater (at Aira Calderaâ??s
Sakurajima volcano) was visible at night during 9-16 December. There were
15 explosions and 10 non-explosive eruptive events detected by the seismic
network. Ash plumes rose 2.4 km above the crater rim, although explosions
at 0115 and 2109 on 10 December generated ash plumes that rose 3 km above
the crater rim. Blocks were ejected as far as 1.3 km away from the crater.
The Alert Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that the eruption at Asosan that began on 7 October continued
through 16 December. Ash plumes rose as high as 1 km and caused ashfall in
areas downwind. The sulfur dioxide emission rate was 3,000-3,300 tons per
day on 11 and 16 September. The Alert Level remained at 2 (on a scale of
1-5).



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, and information from PVMBG, the
Darwin VAAC reported that during 11-17 December ash plumes from Dukono rose
to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted in multiple
directions. The Alert Level remained at 2 (on a scale of 1-4), and the
public was warned to remain outside of the 2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/;

Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 6-13 December that sent ash plumes up to
4 km (13,100 ft) a.s.l. Ash plumes drifted E, causing ashfall in
Severo-Kurilsk during 10-12 December. The Aviation Color Code remained at
Orange (the second highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Karangetang  | Siau Island (Indonesia)  | 2.781°N, 125.407°E  | Summit
elev. 1797 m



PVMBG reported that during 9-15 December lava continued to effuse from
Karangetangâ??s Main Crater (S), traveling as far as 1.8 km down the Nanitu,
Pangi, and Sense drainages on the SW and W flanks. Sometimes dense white
plumes rose to 500 m above the summit. Incandescence from both summit
craters was visible at night. The Alert Level remained at 2 (on a scale of
1-4).



Geologic Summary. Karangetang (Api Siau) volcano lies at the northern end
of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi
island. The stratovolcano contains five summit craters along a N-S line. It
is one of Indonesia's most active volcanoes, with more than 40 eruptions
recorded since 1675 and many additional small eruptions that were not
documented in the historical record (Catalog of Active Volcanoes of the
World: Neumann van Padang, 1951). Twentieth-century eruptions have included
frequent explosive activity sometimes accompanied by pyroclastic flows and
lahars. Lava dome growth has occurred in the summit craters; collapse of
lava flow fronts have produced pyroclastic flows.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that a weak thermal anomaly over Klyuchevskoy was identified
in satellite images during 5, 7, and 11-12 December, and Strombolian
activity was visible during 11-12 December. An ash plume rose to 4.5 km
(14,800 ft) a.s.l. and drifted 30 km SE. The Aviation Color Code remained
at Orange.



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m



Based on information from the Guayaquil MWO, satellite images, and wind
model data, the Washington VAAC reported that during 10-17 December ash
plumes from Sangay rose to 5.8-7.3 km (19,000-24,000 ft) a.s.l. and drifted
in multiple directions. A thermal anomaly was visible on 17 December.



Geologic Summary. The isolated Sangay volcano, located east of the Andean
crest, is the southernmost of Ecuador's volcanoes and its most active. The
steep-sided, glacier-covered, dominantly andesitic volcano grew within
horseshoe-shaped calderas of two previous edifices, which were destroyed by
collapse to the east, producing large debris avalanches that reached the
Amazonian lowlands. The modern edifice dates back to at least 14,000 years
ago. It towers above the tropical jungle on the east side; on the other
sides flat plains of ash have been sculpted by heavy rains into
steep-walled canyons up to 600 m deep. The earliest report of a historical
eruption was in 1628. More or less continuous eruptions were reported from
1728 until 1916, and again from 1934 to the present. The almost constant
activity has caused frequent changes to the morphology of the summit crater
complex.



Source: Washington Volcanic Ash Advisory Center (VAAC)
http://www.ssd.noaa.gov/VAAC/messages.html





Sangeang Api  | Indonesia  | 8.2°S, 119.07°E  | Summit elev. 1912 m



The Darwin VAAC reported that during 11-13 and 17 December discrete ash
emissions from Sangeang Api rose to an altitude of 2.4 km (8,000 ft) a.s.l.
and drifted NW and W. A thermal anomaly was visible on 27 November. The
Alert Level remained at 2 (on a scale of 1-4).



Geologic Summary. Sangeang Api volcano, one of the most active in the
Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of
Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic
cones, Doro Api and Doro Mantoi, were constructed in the center and on the
eastern rim, respectively, of an older, largely obscured caldera. Flank
vents occur on the south side of Doro Mantoi and near the northern coast.
Intermittent historical eruptions have been recorded since 1512, most of
them during in the 20th century.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 6-13 December. The Aviation Color Code remained at
Orange (the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Shishaldin  | Fox Islands (USA)  | 54.756°N, 163.97°W  | Summit elev. 2857 m



AVO reported that seismicity at Shishaldin remained elevated during 10-11
December; low-level tremor was detected along with three small explosions.
Elevated surface temperatures were identified in satellite images and a
steam plume drifting from the summit was visible in webcam images. A
short-lived explosion began at 0710 on 12 December and lasted about three
minutes, coincident with a three-minute long period of elevated tremor. The
event generated an ash plume that rose to altitudes of 6.1-7.6 km
(20,000-25,000 ft) a.s.l., drifted almost 85 km/hour WNW, and then
dissipated a few hours later. Three lightning strokes were detected between
0715 and 0717. The explosion may have collapsed the summit spatter cone.
Highly elevated surface temperatures were visible in satellite images
during 12-13 December, and the webcam showed nighttime incandescence and a
robust steam plume emanating from the summit. Seismicity remained elevated
through 16 December and elevated surface temperatures continued to be
detected. A plume appearing to contain ash drifted from the summit on 14
December. A lava flow was reported by a pilot on 16 December; the next day
satellite images showed a 2-km-long flow on the NW flank. The Aviation
Color Code remained at Orange and the Volcano Alert Level remained at Watch.



Geologic Summary. The beautifully symmetrical volcano of Shishaldin is the
highest and one of the most active volcanoes of the Aleutian Islands. The
2857-m-high, glacier-covered volcano is the westernmost of three large
stratovolcanoes along an E-W line in the eastern half of Unimak Island. The
Aleuts named the volcano Sisquk, meaning "mountain which points the way
when I am lost." A steady steam plume rises from its small summit crater.
Constructed atop an older glacially dissected volcano, it is Holocene in
age and largely basaltic in composition. Remnants of an older ancestral
volcano are exposed on the west and NE sides at 1500-1800 m elevation.
There are over two dozen pyroclastic cones on its NW flank, which is
blanketed by massive aa lava flows. Frequent explosive activity, primarily
consisting of strombolian ash eruptions from the small summit crater, but
sometimes producing lava flows, has been recorded since the 18th century.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/



6-6-6-6-6-6-6-6-6-6-6-6-6

==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/
PSU - http://pdx.edu/
GVP - http://www.volcano.si.edu/
IAVCEI - https://www.iavceivolcano.org/

To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to:
volcano@xxxxxxx.  Please do not send attachments.

==============================================================

------------------------------

End of Volcano Digest - 17 Dec 2019 to 18 Dec 2019 (#2019-116)
**************************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux