4-4-4-4-4-4-4-4-4-4-4-4-4 From: "Kuhn, Sally" <KUHNS@xxxxxx> Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx) URL: https://volcano.si.edu/reports_weekly.cfm New Activity/Unrest: Asamayama, Honshu (Japan) | Shishaldin, Fox Islands (USA) | Stromboli, Aeolian Islands (Italy) | Tangkubanparahu, Western Java (Indonesia) | Veniaminof, United States Ongoing Activity: Aira, Kyushu (Japan) | Asosan, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Ibu, Halmahera (Indonesia) | Karangetang, Siau Island (Indonesia) | Karymsky, Eastern Kamchatka (Russia) | Klyuchevskoy, Central Kamchatka (Russia) | Krakatau, Indonesia | Merapi, Central Java (Indonesia) | Reventador, Ecuador | Sangeang Api, Indonesia | Semisopochnoi, United States | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Ubinas, Peru The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network. Note that many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest Asamayama | Honshu (Japan) | 36.406°N, 138.523°E | Summit elev. 2568 m JMA reported that at 1928 on 25 August a small eruption at Asamayama generated a grayish-white ash plume that rose 600 m above the crater rim and drifted E. Large blocks were also ejected from the crater. Minor ashfall was reported in Karuizawa Town, Nagano Prefecture, about 4 km E. The plume then turned white and continuous emissions rose 200 m during 25-26 August. The Alert Level remained at 2 (on a scale of 1-5). Geologic Summary. Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Shishaldin | Fox Islands (USA) | 54.756°N, 163.97°W | Summit elev. 2857 m AVO reported that during 21-28 August continuous, low-level tremor at Shishaldin was recorded by the seismic network and elevated surface temperatures were often visible in satellite images. The spatter cone in the crater had grown and partially filled the summit crater. NOAA scientists took video of the eruption during an overflight on 17 August and noted repetitive minor explosive activity within the summit crater. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. Geologic Summary. The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steady steam plume rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the west and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/ Stromboli | Aeolian Islands (Italy) | 38.789°N, 15.213°E | Summit elev. 924 m INGV reported that a paroxysmal explosive event at Stromboli began at 1216 on 28 August with a series of explosions likely from the Area C-S (South Central crater area). The event of strongest intensity occurred at 1217, generating an ash plume that rose more than 2 km above the crater area and a pyroclastic flow that traveled down the Sciara del Fuoco and several hundred meters out to sea. The report noted a similarity in intensity of the eruption to the 3 July paroxysmal event based on the seismic data. Geologic Summary. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium. Source: Sezione di Catania - Osservatorio Etneo (INGV) http://www.ct.ingv.it/ Tangkubanparahu | Western Java (Indonesia) | 6.77°S, 107.6°E | Summit elev. 2084 m PVMBG reported that during 19-25 August phreatic events at Tangkubanparahu's Ratu Crater continued to produce sometimes dense gray-to-white plumes that rose as high as 200 m above the vent, and dense black ash plumes that rose as high as 180 m. Ashfall was localized around Ratu Crater. The seismic network recorded continuous tremor. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay 1.5 km away from the active crater. Geologic Summary. Tangkubanparahu (also known as Tangkuban Perahu) is a broad shield-like stratovolcano overlooking Indonesia's former capital city of Bandung. The volcano was constructed within the 6 x 8 km Pleistocene Sunda caldera, which formed about 190,000 years ago. The volcano's low profile is the subject of legends referring to the mountain of the "upturned boat." The rim of Sunda caldera forms a prominent ridge on the western side; elsewhere the caldera rim is largely buried by deposits of Tangkubanparahu volcano. The dominantly small phreatic historical eruptions recorded since the 19th century have originated from several nested craters within an elliptical 1 x 1.5 km summit depression. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Veniaminof | United States | 56.17°N, 159.38°W | Summit elev. 2507 m AVO lowered the Volcano Alert Level to Normal for Veniaminof and the Aviation Color Code to Green on 25 August, noting that the volcano returned to background activity after low-level tremor was detected and a pilot saw steaming on 1 August. Geologic Summary. Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface. Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/ Ongoing Activity Aira | Kyushu (Japan) | 31.593°N, 130.657°E | Summit elev. 1117 m JMA reported that very small eruptive events at Minamidake crater (at Aira Calderaâ??s Sakurajima volcano) occasionally occurred during 19-26 August. The Alert Level remained at 3 (on a 5-level scale). Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Asosan | Kyushu (Japan) | 32.884°N, 131.104°E | Summit elev. 1592 m JMA reported that during 18-23 August ash plumes rose from Asosan and drifted N and NW. Crater incandescence was visible at night. An eruption recorded during 1130-1945 on 25 August generated ash plumes that drifted E. The sulfur dioxide emission rate was 1,800 tons per day on 21 August and remained high on 25 August. The Alert Level remained at 2 (on a scale of 1-5). Geologic Summary. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Dukono | Halmahera (Indonesia) | 1.693°N, 127.894°E | Summit elev. 1229 m Based on satellite and wind model data, and information from PVMBG, the Darwin VAAC reported that during 21-27 August ash plumes from Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted mainly E, NE, N, and NW. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Ebeko | Paramushir Island (Russia) | 50.686°N, 156.014°E | Summit elev. 1103 m Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 17-23 August that sent ash plumes up to 3 km (10,000 ft) a.s.l. and drifted SE. A thermal anomaly was identified in satellite images on 16 August. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Ibu | Halmahera (Indonesia) | 1.488°N, 127.63°E | Summit elev. 1325 m PVMBG reported that at 0704 on 22 August an ash plume from Ibu rose at least 800 m above the summit and drifted W. Seismicity was characterized by an explosion signal and earthquakes indicating rock avalanches. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side. Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Karangetang | Siau Island (Indonesia) | 2.781°N, 125.407°E | Summit elev. 1797 m PVMBG reported that during 19-25 August lava continued to effuse from Karangetangâ??s Main Crater (S) and Dua Crater (N). Avalanches of incandescent material traveled 1-1.5 km SW down the Nanitu and Pangi drainages, as far as 2 km down a drainage W of Pangi, and as far as 1.8 km down the Sense drainage. Sometimes dense white plumes rose to 200 m above the summit. The Alert Level remained at 2 (on a scale of 1-4). Geologic Summary. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Karymsky | Eastern Kamchatka (Russia) | 54.049°N, 159.443°E | Summit elev. 1513 m KVERT reported that ash plumes from Karymsky were visible in satellite images drifting 500 km SW during 20-22 August. Explosions on 21 August produced ash plumes that rose to 6 km (19,700 ft) a.s.l. A thermal anomaly over the volcano was visible during 21-22 August. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Klyuchevskoy | Central Kamchatka (Russia) | 56.056°N, 160.642°E | Summit elev. 4754 m KVERT reported that a weak thermal anomaly over Klyuchevskoy was visible in satellite images during 17-23 August. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Krakatau | Indonesia | 6.102°S, 105.423°E | Summit elev. 813 m PVMBG reported that Anak Krakatauâ??s seismic network recorded 27 eruptive events during 19-25 August. The events were not followed by visible ash emissions, even though there were favorable weather conditions for viewing. An eruption recorded by a summit webcam at 0755 on 22 August produced a white, gray, and black ash plume that rose 100-400 m from the crater rim and drifted N and NW. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km-radius hazard zone from the crater. Geologic Summary. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Merapi | Central Java (Indonesia) | 7.54°S, 110.446°E | Summit elev. 2910 m PVMBG reported that during 19-25 August the lava-dome volume at Merapi did not change and was an estimated 461,000 cubic meters, based on analyses of drone images on 8 August. Extruded lava fell into the upper parts of the SE flank, generating block-and-ash flows that traveled as far as 1.9 km down the Gendol drainage: twice on 20 August, once each on 22 and 24 August, and 10 times during 25-27 August. At 1809 on 27 August a block-and-ash flow traveled 2 km. Diffuse white plumes rose as high as 350 m above the summit. The Alert Level remained at 2 (on a scale of 1-4), and residents were warned to stay outside of the 3-km exclusion zone. Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Reventador | Ecuador | 0.077°S, 77.656°W | Summit elev. 3562 m IG reported that during 21-27 August seismic data from Reventadorâ??s network indicated a high level of seismic activity, including explosions, long-period earthquakes, harmonic tremor, and signals indicating emissions. Weather often prevented views of the summit area, although during clear conditions ash-and-steam plumes were visible rising as high as 1 km above the crater rim and drifting W, NW, and N. Crater incandescence was periodically observed at night. Blocks were observed rolling 800 m down the flanks during 26-27 August. Geologic Summary. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents. Source: Instituto GeofÃsico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ Sangeang Api | Indonesia | 8.2°S, 119.07°E | Summit elev. 1912 m The Darwin VAAC reported that during 21-26 August intermittent ash plumes from Sangeang Api were identified in satellite images rising to 3 km (10,000 ft) a.s.l. and drifting W and WNW. The Alert Level remained at 2 (on a scale of 1-4). Geologic Summary. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml Semisopochnoi | United States | 51.93°N, 179.58°E | Summit elev. 1221 m AVO reported that during 17-23 August seismicity at Semisopochnoi remained elevated and was characterized by periods of continuous tremor and discrete low-frequency earthquakes; seismic data went offline starting sometime on 17 August, though was available by around 22 August. Ground-coupled airwaves, indicative of explosive activity, were sometimes recorded in seismic data; an infrasound signal was recorded during 23-24 August. Cloudy weather often prevented satellite views of the volcano, though a steam plume was visible on 18 August and sulfur dioxide emissions were detected during 21-22 August. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. Geologic Summary. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time. Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/ Sheveluch | Central Kamchatka (Russia) | 56.653°N, 161.36°E | Summit elev. 3283 m KVERT reported that a thermal anomaly over Sheveluchâ??s lava dome was identified daily in satellite images during 17-23 August. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Suwanosejima | Ryukyu Islands (Japan) | 29.638°N, 129.714°E | Summit elev. 796 m The Tokyo VAAC reported that on 26 August a plume from Suwanosejima was visible in satellite images rising to 2.1 km (7,000 ft) a.s.l. The Alert Level remained at 2 (on a 5-level scale). Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html Ubinas | Peru | 16.355°S, 70.903°W | Summit elev. 5672 m IGP reported that during 20-26 August blue-colored gas plumes from Ubinas rose above the crater and eight thermal anomalies were recorded by the MIROVA system. The number of seismic events was 1,736 (all under M 2.4), and there was an increase in the magnitude and number of hybrid and long-period events. Around 1030 on 26 August an ash emission rose to heights below 2 km above the crater rim. Continuous ash emissions on 27 August were recorded by satellite and webcam images drifting S and SW. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 15-km radius. Geologic Summary. A small, 1.4-km-wide caldera cuts the top of Ubinas, Peru's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Perú. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3700 years ago extend 10 km from the volcano. Widespread plinian pumice-fall deposits include one of Holocene age about 1000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions. Source: Instituto GeofÃsico del Perú (IGP) http://www.igp.gob.pe/ 4-4-4-4-4-4-4-4-4-4-4-4-4 ============================================================== Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI). ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - https://www.iavceivolcano.org/ To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx. To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments. ============================================================== ------------------------------ End of Volcano Digest - 26 Aug 2019 to 28 Aug 2019 (#2019-73) *************************************************************