Smithsonian / USGS Weekly Volcanic Activity Report 24-30 April 2019

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6

From: "Kuhn, Sally" <KUHNS@xxxxxx>

6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6


Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Asosan, Kyushu (Japan)  | Klyuchevskoy, Central
Kamchatka (Russia)  | Tengger Caldera, Eastern Java (Indonesia)



Ongoing Activity: Agung, Bali (Indonesia)  | Aira, Kyushu (Japan)  |
Dukono, Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  |
Karymsky, Eastern Kamchatka (Russia)  | Krakatau, Indonesia  | Merapi,
Central Java (Indonesia)  | Nevados de Chillan, Chile  | Poas, Costa Rica
| Reventador, Ecuador  | Ruapehu, North Island (New Zealand)  | Sheveluch,
Central Kamchatka (Russia)  | Turrialba, Costa Rica  | Veniaminof, United
States





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that during 24-29 April white plumes from Asosanâ??s Nakadake
Crater rose 200-800 m above the crater rim. Many low-amplitude tremors and
volcanic earthquakes were recorded. Sulfur dioxide emissions were generally
high but on 25 April the gas emissions were very high at 4,000 tons/day, a
value not exceeded since 12 March. Emissions were 3,300 tons/day on 25
April. Weak incandescence from Nakadake Crater was visible at night during
27-28 April. The Alert Level remained at 2 (on a scale of 1-5).



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that during 21-22 April a weak thermal anomaly over
Klyuchevskoy was identified in satellite images along with gas-and-steam
plumes containing ash drifting 160 km E. The Aviation Color Code was raised
to Orange (the second highest level on a four-color scale).



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Tengger Caldera  | Eastern Java (Indonesia)  | 7.942°S, 112.95°E  | Summit
elev. 2329 m



The Darwin VAAC reported that during 24-26 April white plumes of variable
density rose 300-500 m above Tengger Calderaâ??s Bromo cone. White-to-black
emissions rose 500 m above the cone on 27 April, and white-to-gray
emissions rose 600 m above the cone on 29 April. The Alert Level remained
at 2 (on a scale of 1-4), and visitors were warned to stay outside of a
1-km radius of the crater.



Geologic Summary. The 16-km-wide Tengger caldera is located at the northern
end of a volcanic massif extending from Semeru volcano. The massive
volcanic complex dates back to about 820,000 years ago and consists of five
overlapping stratovolcanoes, each truncated by a caldera. Lava domes,
pyroclastic cones, and a maar occupy the flanks of the massif. The
Ngadisari caldera at the NE end of the complex formed about 150,000 years
ago and is now drained through the Sapikerep valley. The most recent of the
calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the
complex, which formed incrementally during the late Pleistocene and early
Holocene. An overlapping cluster of post-caldera cones was constructed on
the floor of the Sandsea caldera within the past several thousand years.
The youngest of these is Bromo, one of Java's most active and most
frequently visited volcanoes.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ongoing Activity





Agung  | Bali (Indonesia)  | 8.343°S, 115.508°E  | Summit elev. 2997 m



PVMBG reported that at 0534 on 30 April a dense gray ash plume from Agung
rose 1 km above the crater rim and drifted E. The Alert Level remained at 3
(on a scale of 1-4) with the exclusion zone set at a 4-km radius.



Geologic Summary. Symmetrical Agung stratovolcano, Bali's highest and most
sacred mountain, towers over the eastern end of the island. The volcano,
whose name means "Paramount," rises above the SE caldera rim of neighboring
Batur volcano, and the northern and southern flanks extend to the coast.
The summit area extends 1.5 km E-W, with the high point on the W and a
steep-walled 800-m-wide crater on the E. The Pawon cone is located low on
the SE flank. Only a few eruptions dating back to the early 19th century
have been recorded in historical time. The 1963-64 eruption, one of the
largest in the 20th century, produced voluminous ashfall along with
devastating pyroclastic flows and lahars that caused extensive damage and
many fatalities.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that incandescence from Minamidake crater (at Aira Calderaâ??s
Sakurajima volcano) was occasionally visible at night during 22-29 April.
Three events and one explosion during 22-26 April generated plumes that
rose as high as 1.4 km above the crater rim. A small event was recorded on
27 April. The Alert Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, and information from PVMBG, the
Darwin VAAC reported that during 24-27 and 29-30 April ash plumes from
Dukono rose to altitudes of 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted
in multiple directions. The Alert Level remained at 2 (on a scale of 1-4),
and visitors were warned to remain outside of the 2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 21-22 and 24 April that sent ash plumes
up to 2.5 km (8,200 ft) a.s.l. The Aviation Color Code remained at Orange
(the second highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit
elev. 1513 m



KVERT reported that a weak thermal anomaly over Karymsky was visible in
satellite images during 18-21 April. The Aviation Color Code remained at
Orange (the second highest level on a four-color scale).



Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern
volcanic zone, is a symmetrical stratovolcano constructed within a
5-km-wide caldera that formed during the early Holocene. The caldera cuts
the south side of the Pleistocene Dvor volcano and is located outside the
north margin of the large mid-Pleistocene Polovinka caldera, which contains
the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding
Karymsky eruptions originated beneath Akademia Nauk caldera, located
immediately south. The caldera enclosing Karymsky formed about 7600-7700
radiocarbon years ago; construction of the stratovolcano began about 2000
years later. The latest eruptive period began about 500 years ago,
following a 2300-year quiescence. Much of the cone is mantled by lava flows
less than 200 years old. Historical eruptions have been vulcanian or
vulcanian-strombolian with moderate explosive activity and occasional lava
flows from the summit crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Krakatau  | Indonesia  | 6.102°S, 105.423°E  | Summit elev. 813 m



PVMBG reported that there were 19 events during 22-28 April recorded by
Anak Krakatauâ??s seismic network; no emissions from the events were visually
observed, even though the visibility was a mix of clear and foggy
conditions. The Alert Level remained at 2 (on a scale of 1-4), and
residents were warned to remain outside of the 2-km radius hazard zone from
the crater.



Geologic Summary. The renowned volcano Krakatau (frequently misstated as
Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of
the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a
7-km-wide caldera. Remnants of this ancestral volcano are preserved in
Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan
volcanoes were formed, coalescing to create the pre-1883 Krakatau Island.
Caldera collapse during the catastrophic 1883 eruption destroyed Danan and
Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd
largest in Indonesia during historical time, caused more than 36,000
fatalities, most as a result of devastating tsunamis that swept the
adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km
across the Sunda Strait and reached the Sumatra coast. After a quiescence
of less than a half century, the post-collapse cone of Anak Krakatau (Child
of Krakatau) was constructed within the 1883 caldera at a point between the
former cones of Danan and Perbuwatan. Anak Krakatau has been the site of
frequent eruptions since 1927.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Merapi  | Central Java (Indonesia)  | 7.54°S, 110.446°E  | Summit elev.
2910 m



PVMBG reported that during 22-28 April the lava dome at Merapi continued to
grow slowly, with any extruded material channeled into the SE-flank Gendol
River drainage. White emissions rose 70 m. Five block-and-ash flows
traveled as far as 1.2 km in the Gendol drainage on 24 April. The Alert
Level remained at 2 (on a scale of 1-4), and residents were warned to
remain outside of the 3-km exclusion zone.



Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in
one of the world's most densely populated areas and dominates the landscape
immediately north of the major city of Yogyakarta. It is the youngest and
southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth
of Old Merapi during the Pleistocene ended with major edifice collapse
perhaps about 2000 years ago, leaving a large arcuate scarp cutting the
eroded older Batulawang volcano. Subsequently growth of the steep-sided
Young Merapi edifice, its upper part unvegetated due to frequent eruptive
activity, began SW of the earlier collapse scarp. Pyroclastic flows and
lahars accompanying growth and collapse of the steep-sided active summit
lava dome have devastated cultivated lands on the western-to-southern
flanks and caused many fatalities during historical time.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Nevados de Chillan  | Chile  | 36.868°S, 71.378°W  | Summit elev. 3180 m



SERNAGEOMIN reported that the lava dome in Nevados de Chillánâ??s Nicanor
Crater continued a cycle of slow growth and partial destruction from
explosions during 23-30 April. The pulsating, generally white, emissions
were sometimes gray and rose no higher than 900 m above the crater rim and
drifted NW, S, and SE. Nighttime webcam data showed incandescent ejecta
around the crater. The Alert Level remained at Orange, the second highest
level on a four-color scale, and residents were reminded not to approach
the crater within 3 km. ONEMI maintained an Alert Level Yellow (the middle
level on a three-color scale) for the communities of Pinto, Coihueco, and
San Fabián.



Geologic Summary. The compound volcano of Nevados de Chillán is one of the
most active of the Central Andes. Three late-Pleistocene to Holocene
stratovolcanoes were constructed along a NNW-SSE line within three nested
Pleistocene calderas, which produced ignimbrite sheets extending more than
100 km into the Central Depression of Chile. The largest stratovolcano,
dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW
end of the group. Volcán Viejo (Volcán Chillán), which was the main active
vent during the 17th-19th centuries, occupies the SE end. The new Volcán
Nuevo lava-dome complex formed between 1906 and 1945 between the two
volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau
dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and
eventually exceeded its height.



Source: Servicio Nacional de Geología y Minería (SERNAGEOMIN)
http://www.sernageomin.cl/





Poas  | Costa Rica  | 10.2°N, 84.233°W  | Summit elev. 2708 m



OVSICORI-UNA reported that on 24 April a very diffuse ash emission rose
from Poás. Incandescence from vent A (Boca Roja) was sometimes visible
during 24 and 27-28 April.



Geologic Summary. The broad, well-vegetated edifice of Poás, one of the
most active volcanoes of Costa Rica, contains three craters along a N-S
line. The frequently visited multi-hued summit crater lakes of the
basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent
natural landmarks, are easily accessible by vehicle from the nearby capital
city of San José. A N-S-trending fissure cutting the 2708-m-high complex
stratovolcano extends to the lower northern flank, where it has produced
the Congo stratovolcano and several lake-filled maars. The southernmost of
the two summit crater lakes, Botos, is cold and clear and last erupted
about 7500 years ago. The more prominent geothermally heated northern lake,
Laguna Caliente, is one of the world's most acidic natural lakes, with a pH
of near zero. It has been the site of frequent phreatic and phreatomagmatic
eruptions since the first historical eruption was reported in 1828.
Eruptions often include geyser-like ejections of crater-lake water.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Reventador  | Ecuador  | 0.077°S, 77.656°W  | Summit elev. 3562 m



IG reported that during 23-30 April periodic seismic data from Reventadorâ??s
network indicated a high level of seismic activity, including explosions,
long-period earthquakes, harmonic tremor, and signals indicating emissions.
Steam, gas, and ash plumes sometimes rose higher than 1 km above the crater
rim and drifted N, NW, W, and SW. Incandescent blocks were observed rolling
500-800 m down the flanks. Inclement weather sometimes prevented visual
observations.



Geologic Summary. Reventador is the most frequently active of a chain of
Ecuadorian volcanoes in the Cordillera Real, well east of the principal
volcanic axis. The forested, dominantly andesitic Volcán El Reventador
stratovolcano rises to 3562 m above the jungles of the western Amazon
basin. A 4-km-wide caldera widely breached to the east was formed by
edifice collapse and is partially filled by a young, unvegetated
stratovolcano that rises about 1300 m above the caldera floor to a height
comparable to the caldera rim. It has been the source of numerous lava
flows as well as explosive eruptions that were visible from Quito in
historical time. Frequent lahars in this region of heavy rainfall have
constructed a debris plain on the eastern floor of the caldera. The largest
historical eruption took place in 2002, producing a 17-km-high eruption
column, pyroclastic flows that traveled up to 8 km, and lava flows from
summit and flank vents.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
http://www.igepn.edu.ec/





Ruapehu  | North Island (New Zealand)  | 39.28°S, 175.57°E  | Summit elev.
2797 m



GeoNet reported that the period of high water temperatures at Ruapehuâ??s
summit Crater Lake along with elevated tremor levels was over. Tremor
levels began to decline on 16 April and by 29 April was described as weak.
The lake water reached a peak temperature of 44 degrees Celsius on 19 April
and then began cooling; the temperature was 39 degrees Celsius by 29 April.
The report noted that the probability of an eruption during a heating cycle
had decreased with the decreasing activity. The Volcanic Alert Level
remained at 1 (minor volcanic unrest) and the Aviation Color Code remained
at Green.



Geologic Summary. Ruapehu, one of New Zealand's most active volcanoes, is a
complex stratovolcano constructed during at least four cone-building
episodes dating back to about 200,000 years ago. The 110 km3 dominantly
andesitic volcanic massif is elongated in a NNE-SSW direction and
surrounded by another 100 km3 ring plain of volcaniclastic debris,
including the Murimoto debris-avalanche deposit on the NW flank. A series
of subplinian eruptions took place between about 22,600 and 10,000 years
ago, but pyroclastic flows have been infrequent. A single historically
active vent, Crater Lake, is located in the broad summit region, but at
least five other vents on the summit and flank have been active during the
Holocene. Frequent mild-to-moderate explosive eruptions have occurred in
historical time from the Crater Lake vent, and tephra characteristics
suggest that the crater lake may have formed as early as 3000 years ago.
Lahars produced by phreatic eruptions from the summit crater lake are a
hazard to a ski area on the upper flanks and to lower river valleys.



Source: GeoNet http://www.geonet.org.nz/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluchâ??s lava dome was
identified daily in satellite images during 18-26 April. Ash plumes were
visible drifting 300 km NE during 22-23 April. The Aviation Color Code
remained at Orange (the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m



OVSICORI-UNA reported that a diffuse ash emission rose from Turrialba on 24
April, and an emission with low ash content drifted N on 26 April. At 0722
on 27 April a small, short-duration eruption generated an ash plume that
rose less than 100 m above the crater rim.



Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene
volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located
across a broad saddle NE of Irazú volcano overlooking the city of Cartago.
The massive edifice covers an area of 500 km2. Three well-defined craters
occur at the upper SW end of a broad 800 x 2200 m summit depression that is
breached to the NE. Most activity originated from the summit vent complex,
but two pyroclastic cones are located on the SW flank. Five major explosive
eruptions have occurred during the past 3500 years. A series of explosive
eruptions during the 19th century were sometimes accompanied by pyroclastic
flows. Fumarolic activity continues at the central and SW summit craters.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Veniaminof  | United States  | 56.17°N, 159.38°W  | Summit elev. 2507 m



On 30 April AVO lowered the Aviation Color Code for Veniaminof to Green and
the Volcano Alert Level to Normal, noting that signs of unrest had
continued to decline over the previous four months since the eruption ended
in early January. Low-level tremor, slightly elevated surface temperatures,
and minor steam emissions continued and considered typical activity for a
post-eruptive period.



Geologic Summary. Massive Veniaminof volcano, one of the highest and
largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled,
8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The
caldera rim is up to 520 m high on the north, is deeply notched on the west
by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera
vents are located along a NW-SE zone bisecting the caldera that extends 55
km from near the Bering Sea coast, across the caldera, and down the Pacific
flank. Historical eruptions probably all originated from the westernmost
and most prominent of two intra-caldera cones, which rises about 300 m
above the surrounding icefield. The other cone is larger, and has a summit
crater or caldera that may reach 2.5 km in diameter, but is more subdued
and barely rises above the glacier surface.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/

==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/
PSU - http://pdx.edu/
GVP - http://www.volcano.si.edu/
IAVCEI - http://www.iavcei.org/

To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to:
volcano@xxxxxxx.  Please do not send attachments.

==============================================================

------------------------------

End of Volcano Digest - 1 May 2019 to 3 May 2019 (#2019-41)
***********************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux