Subject: Smithsonian / USGS Weekly Volcanic Activity Report 4-10 July 2018
Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)
URL: https://volcano.si.edu/re
New Activity/Unrest: Agung, Bali (Indonesia) | Ambae, Vanuatu | Ibu, Halmahera (Indonesia) | Karangetang, Siau Island (Indonesia) | Krakatau, Indonesia | Saunders, South Sandwich Islands (UK) | Sierra Negra, Isla Isabela (Ecuador)
Ongoing Activity: Aira, Kyushu (Japan) | Cleveland, Chuginadak Island (USA) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Kilauea, Hawaiian Islands (USA) | Pacaya, Guatemala | Sabancaya, Peru | Santa Maria, Guatemala | Sheveluch, Central Kamchatka (Russia)
The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.
Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.
New Activity/Unrest
Agung | Bali (Indonesia) | 8.343°S, 115.508°E | Summit elev. 2997 m
PVMBG reported that the eruption at Agung continued during 4-10 July. Sulfur dioxide flux was 1,400-2,400 tons/day on 3 July and 400-1,500 tons/day on 4 July. Satellite data acquired on 4 July indicated continuing lava effusion in the crater, with 4-5 million cubic meters effused in the past week. At 1220 an ash plume rose 2.5 km above the crater rim and drifted W. An event was detected at 2216, though an ash plume was not visible possibly due to poor viewing conditions. At 0047 on 5 July an ash plume rose at least 1 km and drifted W, and an event at 1633 produced an ash plume that rose 2.8 km and drifted E and W. A small event was detected on 6 July. According to BNPB a third Strombolian event occurred at 0522 on 8 July, generating an ash plume that rose 2 km. They noted that 4,415 evacuees were housed in 54 evacuation centers. An ash plume rose from the crater at 1120 on 9 July and drifted W. The Alert Level remained at 3 (on a scale of 1-4) and the exclusion zone was stable at a 4-km radius.
Geologic Summary. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.
Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/;
Badan Nacional Penanggulangan Bencana (BNPB) http://www.bnpb.go.id/
Ambae | Vanuatu | 15.389°S, 167.835°E | Summit elev. 1496 m
The Vanuatu Meteorology and Geo-hazards Department reported that the recent eruption at Ambae’s Lake Voui was characterized by three phases of activity: Phase 1, September to late November 2017; Phase 2, late December 2017 to early February 2018; and Phase 3, February to April 2018. A fourth phase, which began on 20 June, consists of gas-and-steam emissions sometimes with ash; an ash plume on 1 July caused ashfall on the NW and W parts of the island and also on the NE part of Santo Island. The Alert Level remained at 2 (on a scale of 0-5), and the report reminded residents to stay at least 2 km away from the active crater.
Geologic Summary. The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.
Source: Vanuatu Meteorology and Geo-hazards Department http://www.geohazar
Ibu | Halmahera (Indonesia) | 1.488°N, 127.63°E | Summit elev. 1325 m
Based on satellite images and PVMBG (a ground observer) notices, the Darwin VAAC reported that on 6 July an ash plume from Ibu rose to 2.1 km (7,000 ft) a.s.l. and drifted N. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.
Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.
Sources: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/a
Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/
Karangetang | Siau Island (Indonesia) | 2.781°N, 125.407°E | Summit elev. 1797 m
Based on analyses of satellite imagery and model data, the Darwin VAAC reported that on 4 July a diffuse ash plume from Karangetang rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted ENE. The Alert Level remained at 2 (on a scale of 1-4).
Geologic Summary. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, north of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts has also produced pyroclastic flows.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/a
Krakatau | Indonesia | 6.102°S, 105.423°E | Summit elev. 813 m
PVMBG reported that during 4-5 July there were four ash-producing events at Anak Krakatau, each lasting between 30 and 41 seconds. Inclement weather conditions prevented an estimation of the ash-plume height from the event at 0522 on 4 July; ash plumes from events at 1409, 1425, and 1651 on 5 July rose 300-500 m above the crater rim and drifted N and NW. The Alert Level remained at 2 (on a scale of 1-4); residents and visitors were warned not to approach the volcano within 1 km of the crater.
Geologic Summary. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.
Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/
Saunders | South Sandwich Islands (UK) | 57.8°S, 26.483°W | Summit elev. 843 m
Satellite data acquired during 1 January-9 July periodically (a few times a month) showed volcanic plumes originating from Michael on Saunders Island. A thermal anomaly was last detected on 3 April 2018.
Geologic Summary. Saunders Island is a volcanic structure consisting of a large central edifice intersected by two seamount chains, as shown by bathymetric mapping (Leat et al., 2013). The young constructional Mount Michael stratovolcano dominates the glacier-covered island, while two submarine plateaus, Harpers Bank and Saunders Bank, extend north. The symmetrical Michael has a 500-m-wide summit crater and a remnant of a somma rim to the SE. Tephra layers visible in ice cliffs surrounding the island are evidence of recent eruptions. Ash clouds were reported from the summit crater in 1819, and an effusive eruption was inferred to have occurred from a N-flank fissure around the end of the 19th century and beginning of the 20th century. A low ice-free lava platform, Blackstone Plain, is located on the north coast, surrounding a group of former sea stacks. A cluster of parasitic cones on the SE flank, the Ashen Hills, appear to have been modified since 1820 (LeMasurier and Thomson, 1990). Vapor emission is frequently reported from the summit crater. Recent AVHRR and MODIS satellite imagery has revealed evidence for lava lake activity in the summit crater.
Sources: René Goad https://volcanoplanet.co.
Santiago Gassó, National Aeronautics and Space Administration Goddard Space Flight Center https://science.gsfc.na
Sierra Negra | Isla Isabela (Ecuador) | 0.83°S, 91.17°W | Summit elev. 1124 m
IG reported that a new magmatic intrusion at Sierra Negra was heralded by a M 5.2 earthquake recorded at 1830 on 4 July, and followed by 68 events between M 1.1 and 3.9. Seismic tremor began to be recorded at 1700 on 7 July by a station on the NE edge of the caldera. At the same time satellite data showed an increase in the intensity of the thermal anomaly on NW flank (it had decreased the previous day). Parque Nacional Galápagos staff confirmed strong incandescence in an area near the beach. A weak plume of water vapor and ash rose as high as 3.3 km (10,800 ft) a.s.l. and drifted SW and W. Tremor continued to be registered on 8 July, though the amplitude gradually decreased. Vapor-and-ash plumes reported by the Washington VAAC rose about 2 km (6,600 ft) a.s.l. and drifted SW, and the thermal anomaly remained intense. Gas clouds drifted 115 km W.
The current eruption at Sierra Negra began on 26 June and, according to news articles, prompted tourist restrictions and the evacuation of 50 residents.
Geologic Summary. The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcán de Azufre, the largest fumarolic area in the Galápagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcán Wolf, is one of the most active of Isabela Island volcanoes.
Sources: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/;
BBC News https://www.bbc.com/news/
Ongoing Activity
Aira | Kyushu (Japan) | 31.593°N, 130.657°E | Summit elev. 1117 m
JMA reported that there were two events and three explosions at Minamidake crater (at Aira Caldera’s Sakurajima volcano) during 2-9 July, with ash plumes rising as high as 1.3 km above the crater rim and material ejected as far as 1.1 km. Crater incandescence was sometimes visible at night. The Alert Level remained at 3 (on a 5-level scale).
Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.
Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma
Cleveland | Chuginadak Island (USA) | 52.825°N, 169.944°W | Summit elev. 1730 m
AVO reported that unrest at Cleveland continued during 4-10 July, though nothing significant was detected in seismic or infrasound data. Meteorological cloud cover often prevented views of the crater. Weakly elevated surface temperatures were identified in satellite images during 7 and 9-10 July; a small steam cloud was visible on 7 July. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.
Geologic Summary. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.
Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/
Dukono | Halmahera (Indonesia) | 1.693°N, 127.894°E | Summit elev. 1229 m
Based on PVMBG observations and satellite data, the Darwin VAAC reported that during 4-10 July ash plumes from Dukono rose to altitudes of 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted N, NE, and E.
Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/a
Ebeko | Paramushir Island (Russia) | 50.686°N, 156.014°E | Summit elev. 1103 m
Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 30 June-1 July that sent ash plumes as high as 3.2 km (10,500 ft) a.s.l. Satellite data showed ash plumes drifting 57 km SE on 1 July. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/i
Fuego | Guatemala | 14.473°N, 90.88°W | Summit elev. 3763 m
INSIVUMEH and CONRED reported relatively quiet conditions at Fuego during 4-9 July characterized mainly by gas emissions and block avalanches on the flanks. During 7-8 July there was about one explosion detected every two hours, producing diffuse ash plumes that rose 500 m above the crater and drifted SW. Block avalanches descended the Seca (W), Cenizas (SSW), and Las Lajas (SE) drainages, while lahars were present in the El Jute (SE), Las Lajas, Cenizas, Taniluyá (SW), Seca, Mineral, and Pantaleón (W) drainages. Seismicity increased on 10 July. Explosions generated ash plumes that rose 2.3 km and drifted 12 km SE, causing ashfall in Morelia (9 km SW) and Panimaché (8 km SW). According to CONRED, as of 4 July, the number of people confirmed to have died due to the 3 June pyroclastic flows was 113, and 332 remained missing.
Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivum
Coordinadora Nacional para la Reducción de Desastres (CONRED) http://conred.gob.gt/
Kilauea | Hawaiian Islands (USA) | 19.421°N, 155.287°W | Summit elev. 1222 m
HVO reported that the eruption at Kilauea’s Lower East Rift Zone (LERZ) and at Overlook Crater within Halema`uma`u Crater continued during 4-10 July. Lava fountaining and spatter was concentrated at Fissure 8, feeding lava flows that spread through Leilani Estates and Lanipuna Gardens subdivisions, and built out the coastline at multiple ocean entries. Fissure 22 produced spattering 50-80 m above its spatter cone and fed short lava flows that traveled NE on 4 July; weak spattering was visible form the cone the rest of the week.
Inward slumping of the crater rim and walls of Halema`uma`u continued, adjusting from the withdrawal of magma and subsidence of the summit area. Explosions from collapse events occurred almost daily, producing gas-and-ash-poor plumes.
Fountaining at Fissure 8 continued; lava fountains rarely rose higher than the 55-m-high spatter cone. Pele's hair and other volcanic glass from the fountaining fell within Leilani Estates. The fountains continued to feed the lava flow that traveled NE, and then SE around Kapoho Crater. Occasional overflows sent small flows down the sides of the channel that did not extend beyond areas previously covered in lava in the upper part of the channel; overflows further down traveled beyond the flow-field boundary. Small brush fires were ignited from some of the overflows. A thermal map from 6 July showed that lava was not entering the ocean from the main channel and that the open channel ended about 2 km inland. Lava was flowing into the ocean at the N part of the broad flow front. Observations on 9 July indicated that a blockage had formed upstream of Kapoho Crater, and by 10 July a small lobe was moving around the W side of the crater.
Geologic Summary. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.
Source: US Geological Survey Hawaiian Volcano Observatory (HVO) https://volcanoes.usgs.g
Pacaya | Guatemala | 14.382°N, 90.601°W | Summit elev. 2569 m
INSIVUMEH reported that during 5-10 July Strombolian explosions at Pacaya’s Mackenney Crater ejected material as high as 30 m above the crater rim. White gas plumes drifted SW. A lava flow originating from Mackenney Crater traveled 500 m down the N flank during 7-8 July, reaching the volcano’s base.
Geologic Summary. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivum
Sabancaya | Peru | 15.787°S, 71.857°W | Summit elev. 5960 m
Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosions at Sabancaya averaged 22 per day during 2-8 July. Hybrid earthquakes were infrequent and low magnitude. Gas-and-ash plumes rose as high as 2.5 km above the crater rim and drifted 30 km S, SE, and E. The MIROVA system detected nine thermal anomalies, and on 3 July the sulfur dioxide gas flux was high at 4,715 tons/day. The report noted that the public should not approach the crater within a 12-km radius.
Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.
Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.ingemmet
Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/
Santa Maria | Guatemala | 14.757°N, 91.552°W | Summit elev. 3745 m
INSIVUMEH reported that during 5-10 July explosions at Santa María's Santiaguito lava-dome complex generated ash plumes that rose 200-700 m and drifted SW and W. Local ashfall was reported. Avalanches of material descended the SE and W flanks of the lava dome.
Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of the most prominent of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The 3772-m-high stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank and was formed during a catastrophic eruption in 1902. The renowned plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivum
Sheveluch | Central Kamchatka (Russia) | 56.653°N, 161.36°E | Summit elev. 3283 m
KVERT reported that a weak thermal anomaly over Sheveluch was identified in satellite images during 4-5 July. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/i
Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).
ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/
To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.
To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.
==============================================================