VOLCANO: Smithsonian / USGS Weekly Volcanic Activity Report 21-27 February 2018

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



************************************************************************************************************
From: "Kuhn, Sally" <KUHNS@xxxxxx>
Subject: Smithsonian / USGS Weekly Volcanic Activity Report 21-27 February 2018
************************************************************************************************************


Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: http://volcano.si.edu/reports_weekly.cfm

 

 

New Activity/Unrest: Kadovar, Papua New Guinea  | Mayon, Luzon (Philippines)  | Sangay, Ecuador  | Semeru, Eastern Java (Indonesia)  | Sinabung, Indonesia

 

Ongoing Activity: Aira, Kyushu (Japan)  | Ambae, Vanuatu  | Bagana, Bougainville (Papua New Guinea)  | Cleveland, Chuginadak Island (USA)  | Dukono, Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  | Karymsky, Eastern Kamchatka (Russia)  | Kilauea, Hawaiian Islands (USA)  | Sabancaya, Peru  | Sheveluch, Central Kamchatka (Russia)  | Turrialba, Costa Rica

 

 

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

 

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.

 

 

 

New Activity/Unrest

 

 

Kadovar  | Papua New Guinea  | 3.608°S, 144.588°E  | Summit elev. 365 m

 

RVO reported that lava continued to flow from the SE Coastal Vent resulting in the connection of a reemerged lava island to the coast of Kadovar within a few days of the 1 February collapse. During 14-22 February continuous plumes of white vapor rose from both Main Crater and SE Coastal Vent, punctuated by dense ash emissions from both areas during 16 and 20-22 February and occasional booming noises. Ash plumes rose 370 m above the island and drifted SE, though on 22 February the winds blew the plumes N and NW. Incandescence from both areas was visible on 22 February. A sulfur odor was noticed by residents on Blup Blup (15 km N) on 16 and 22 February.

 

Geologic Summary. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. Kadovar is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. The village of Gewai is perched on the crater rim. A 365-m-high lava dome forming the high point of the andesitic volcano fills an arcuate landslide scarp that is open to the south, and submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. No certain historical eruptions are known; the latest activity was a period of heightened thermal phenomena in 1976.

 

Source: Rabaul Volcano Observatory (RVO)

 

 

Mayon  | Luzon (Philippines)  | 13.257°N, 123.685°E  | Summit elev. 2462 m

 

PHIVOLCS reported that during 21-27 February activity at Mayon continued to be characterized by daily lava effusion from the summit crater, lava fountains on most days, steam-and-ash emissions, advancing lava flows on the flanks, and pyroclastic flows. Weak and sporadic lava fountaining events each lasted between 2 and 77 minutes, and were sometimes accompanied by rumbling sounds audible within a 10-km radius. Each day there were 1-21 pyroclastic flows generated by lava-collapse events traveling as far as 5 km down the Mi-isi, Bonga-Buyuan, and Basud drainages. The Alert Level remained at 4 (on a 0-5 scale) and the public was warned to remain outside of the Danger Zone defined as an area within an 8-km radius.

 

Geologic Summary. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

 

Source: Philippine Institute of Volcanology and Seismology (PHIVOLCS) http://www.phivolcs.dost.gov.ph/

 

 

Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m

 

The Washington VAAC reported that on 25 February emissions from Sangay with minor ash content rose to an altitude of 6.1 km (20,000 ft) a.s.l. and drifted almost 170 km NE.

 

Geologic Summary. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

 

Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

 

 

Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev. 3657 m

 

According to the Darwin VAAC ash plumes from Semeru rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted almost 20 km ESE and WSW. A thermal anomaly preceded the emissions.

 

Geologic Summary. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/info/vaac/advisories.shtml

 

 

Sinabung  | Indonesia  | 3.17°N, 98.392°E  | Summit elev. 2460 m

 

Based on observations by PVMBG, satellite and webcam images, and model data, the Darwin VAAC reported that during 25-26 February ash plumes from Sinabung rose 3.4-3.7 km (11,000-12,000 ft) a.s.l. and drifted SW and W.

 

Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/info/vaac/advisories.shtml

 

 

Ongoing Activity

 

 

Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m

 

JMA reported that at 0820 on 19 February an explosion at Minamidake crater (at Aira Caldera’s Sakurajima volcano) generated a plume that rose 1.5 km above the crater rim. An event at 1639 on 24 February produced a plume that rose 800 m. The Alert Level remained at 3 (on a 5-level scale).

 

Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

 

Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/

 

 

Ambae  | Vanuatu  | 15.4°S, 167.83°E  | Summit elev. 1496 m

 

Based on satellite and webcam observations, the Wellington VAAC reported that on 24 February an ash plume from Ambae rose to an altitude of 4 km (13,000 ft) a.s.l. and drifted NW.

 

Geologic Summary. Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. Post-caldera explosive eruptions formed the summit craters of Lake Voui (also spelled Vui) and Lake Manaro Ngoru about 360 years ago. A tuff cone was constructed within Lake Voui about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

 

Source: Wellington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html

 

 

Bagana  | Bougainville (Papua New Guinea)  | 6.137°S, 155.196°E  | Summit elev. 1855 m

 

Based on analyses of satellite imagery and model data, the Darwin VAAC reported that during 26-27 February ash plumes from Bagana rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted WNW.

 

Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/info/vaac/advisories.shtml

 

 

Cleveland  | Chuginadak Island (USA)  | 52.825°N, 169.944°W  | Summit elev. 1730 m

 

AVO reported that a small explosion at Cleveland was detected in seismic and infrasound data at 2154 on 21 February. A satellite image acquired several hours after the event showed an area of moderately elevated surface temperatures extending about 2 km ESE from the summit, indicative of a warm deposit. The Aviation Color Code remained at Yellow and the Volcano Alert Level remained at Advisory.

 

Geologic Summary. Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

 

Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/

 

 

Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m

 

Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 21-27 February ash plumes from Dukono rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted in multiple directions.

 

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/info/vaac/advisories.shtml

 

 

Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev. 1103 m

 

Based on observations by volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, explosions during 17-18 and 20-21 February generated ash plumes that rose as high as 2.4 km (7,900 ft) a.s.l. Ashfall was reported in Severo-Kurilsk during 17-18 February. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

 

Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit elev. 1513 m

 

KVERT reported that a thermal anomaly over Karymsky was identified in satellite images on 18 February. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

 

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev. 1222 m

 

During 21-27 February HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea’s Overlook crater. Webcams recorded incandescence from a small lava pond in a pit on the W side of Pu'u 'O'o Crater. Surface lava flows were active above and on the pali, and on the coastal plain. A small portion of material from the inner veneer of the crater wall collapsed into the lava lake just after 0700 on 23 February.

 

Geologic Summary. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

 

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) https://volcanoes.usgs.gov/observatories/hvo/

 

 

Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m

 

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosive activity at Sabancaya was similar to the previous week; there was an average of 17 explosions recorded per day during 19-25 February. Seismicity was dominated by long-period events, with signals indicating emissions. Gas-and-ash plumes rose 4.5 km above the crater rim and drifted 50 km NW, SW, S, and SE. The MIROVA system detected one thermal anomaly. The sulfur dioxide flux was high, at 2,092 tons per day on 25 February. The report noted that the public should not to approach the crater within a 12-km radius.

 

Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

 

Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.ingemmet.gob.pe/;

Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/

 

 

Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit elev. 3283 m

 

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 16, 18, and 20-21 February. The Aviation Color Code remained at Orange.

 

Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m

 

OVSICORI-UNA reported that an event at Turrialba at 0800 on 27 February generated a plume that rose 100 m above the crater rim and drifted SW.

 

Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

 

Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/


















==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/

To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.

==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux