VOLCANO: Smithsonian / USGS Weekly Volcanic Activity Report 18 October-24 October 2017

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



*******************************************************************************************************
From: "Venzke, Ed" <VENZKEE@xxxxxx>
Subject: Smithsonian / USGS Weekly Volcanic Activity Report 18 October-24 October 2017
*******************************************************************************************************

Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx
URL: http://www.volcano.si.edu/reports_weekly.cfm


New Activity/Unrest: Agung, Bali (Indonesia)  | Aoba, Vanuatu  | Kirishimayama, Kyushu (Japan)  | Tinakula, Solomon Islands

Ongoing Activity: Aira, Kyushu (Japan)  | Cleveland, Chuginadak Island (USA)  | Dukono, Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  | Karymsky, Eastern Kamchatka (Russia)  | Kilauea, Hawaiian Islands (USA)  | Langila, New Britain (Papua New Guinea)  | Sabancaya, Peru  | Sheveluch, Central Kamchatka (Russia)  | Sinabung, Indonesia  | Turrialba, Costa Rica

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.

 

New Activity/Unrest

Agung  | Bali (Indonesia)  | 8.343°S, 115.508°E  | Summit elev. 2995 m

PVMBG reported that although foggy conditions at Agung occasionally prevented visual observations, during 18-24 October dense white plumes were seen rising as high as 500 m above the crater rim. Seismicity fluctuated but remained high, though BNPB reported that overall seismicity had decreased. According to BNPB a team launched a drone on 19 October and were able to capture video of the fumarolic emissions from several vents and cracks in the crater. The Alert Level remained at 4 (the highest level on a scale of 1-4) with the exclusion zone at 9 km, and an additional expansion to 12 km in the SE, S, and SW directions.

Geologic Summary. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.id/Badan Nacional Penanggulangan Bencana (BNPB) http://www.bnpb.go.id/



Aoba  | Vanuatu  | 15.4°S, 167.83°E  | Summit elev. 1496 m

According to a news article posted on 20 October, residents that had evacuated from Aoba after the eruption from a vent in Lake Voui were returning home. Based on analyses of satellite imagery and model data, the Wellington VAAC reported that during 22-23 October intermittent events generated low-level ash plumes that rose 2.4-3.7 km (8,000-12,000 ft) a.s.l. and drifted E.

Geologic Summary. Aoba, also known as Ambae, is a massive 2500 cu km basaltic shield volcano that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes is located at the summit of the Hawaiian-style shield volcano within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. Post-caldera explosive eruptions formed the summit craters of Lake Voui (also spelled Vui) and Lake Manaro Ngoru about 360 years ago. A tuff cone was constructed within Lake Voui about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Sources: Wellington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.htmlABC News - Australian Broadcasting Corporation http://www.abc.net.au/news/2017-10-20/vanuatu-government-to-send-ambae-islanders-back-home/9070340



Kirishimayama  | Kyushu (Japan)  | 31.934°N, 130.862°E  | Summit elev. 1700 m

JMA reported that the eruption at Shinmoe-dake (Shinmoe peak), a stratovolcano of the Kirishimayama volcano group, began on 11 October and lasted almost continuously until the morning of 17 October. The eruption plume usually rose several hundred meters about the crater rim, though on 14 October the plume rose as high as 2.3 km. Sulfur dioxide flux exceeding 10,000 tons/day was also recorded. Cloudy weather conditions prevented webcam views during 19-20 October. Plumes rose 200-600 m on 21, 23, and 24 October. During an overflight on 24 October scientists observed a white plume rising from the active vent on the E side of the crater, and puddles in multiple low areas of the crater. The Alert Level remained at 3 (on a scale of 1-5).

Geologic Summary. Kirishimayama is a large group of more than 20 Quaternary volcanoes located north of Kagoshima Bay. The late-Pleistocene to Holocene dominantly andesitic group consists of stratovolcanoes, pyroclastic cones, maars, and underlying shield volcanoes located over an area of 20 x 30 km. The larger stratovolcanoes are scattered throughout the field, with the centrally located, 1700-m-high Karakunidake being the highest. Onamiike and Miike, the two largest maars, are located SW of Karakunidake and at its far eastern end, respectively. Holocene eruptions have been concentrated along an E-W line of vents from Miike to Ohachi, and at Shinmoedake to the NE. Frequent small-to-moderate explosive eruptions have been recorded since the 8th century.

Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/



Tinakula  | Solomon Islands  | 10.386°S, 165.804°E  | Summit elev. 796 m

Based on satellite data, the Wellington VAAC reported that an eruption at Tinakula began around 0620 on 21 October, producing a sulfur dioxide signature, and an ash plume that rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted N. Another eruption at 1040 generated an ash plume that rose significantly higher that the first, to an altitude of 10.7 (35,000 ft) a.s.l. and drifted SE. Later that day ash plumes rose to 6.1 km (20,000 ft) a.s.l. Ash emissions continued through at least 24 October, rising to altitudes of 3-3.7 (10,000-12,000 ft) a.s.l. and drifting E and W on 22 October, 2.4 km (8,000 ft) a.s.l. and drifting S and SE on 23 October, and 1.8 km (6,000 ft) a.s.l. with a SW drift on 24 October. A news article from 24 October stated that water supplies in the Reef Islands had been contaminated with ashfall, and that ashfall was also reported in Fenualoa, and likely in Nupani.

Geologic Summary. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano that rises 3-4 km from the sea floor at the NW end of the Santa Cruz islands. Tinakula resembles Stromboli volcano in containing a breached summit crater that extends from the 851-m-high summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic Tinakula volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks of the volcano and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Sources: Wellington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.htmlRadio New Zealand http://www.radionz.co.nz/international/pacific-news/342267/solomons-pm-calls-for-calm-in-communities-close-to-volcano

 

Ongoing Activity

Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m

JMA reported that a very small event at Showa Crater (at Aira Caldera’s Sakurajima volcano) was detected on 17 October. The Alert Level remained at 3 (on a 5-level scale).

Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/



Cleveland  | Chuginadak Island (USA)  | 52.825°N, 169.944°W  | Summit elev. 1730 m

AVO reported that the lava dome in Cleveland's summit crater continued to grow, and by 15 October it covered an area of about 9,500 square meters with dimensions of 125 x 100 m. No significant change in the size of the dome was identified in satellite data from 15 to 19 October. During 16 and 21-23 October satellite data showed moderately elevated surface temperatures and a small steam plume was visible in web camera images. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geologic Summary. Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/



Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m

Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 19-20 and 22-23 October ash plumes from Dukono rose to altitudes of 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted NNE, NE, and E.

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/



Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev. 1103 m

Based on observations by volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, explosions during 13-20 October generated ash plumes that rose as high as 2.5 km (8,200 ft) a.s.l. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php



Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit elev. 1513 m

On 19 October KVERT reported that gas-and-steam activity at Karymsky continued, and that quiet or cloudy conditions had been observed in satellite data since 3 October. The Aviation Color Code was lowered to Yellow (the second highest level on a four-color scale).

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php



Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev. 1222 m

During 18-24 October HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea’s Overlook crater. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater and from a small lava pond in a pit on the W side of the crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna. Surface lava flows were active above the pali and on the coastal plain.

Geologic Summary. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/



Langila  | New Britain (Papua New Guinea)  | 5.525°S, 148.42°E  | Summit elev. 1330 m

Based on analyses of satellite imagery and wind model data, the Darwin VAAC reported that during 17-18 and 20 October ash plumes from Langila rose 1.5-1.8 km (5,000-6,000 ft) a.s.l. and drifted S, W, and NW.

Geologic Summary. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/



Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosive activity at Sabancaya slightly increased compared to the previous week; there was an average of 47 explosions recorded per day during 16-22 October. Seismicity was dominated by long-period events, with an increase in signals indicating emissions and a low number of hybrid events. Gas-and-ash plumes rose 3.8 km above the crater rim and drifted 60 km NE, E, and SE. The MIROVA system detected four thermal anomalies. The report warned the public not to approach the crater within a 12-km radius.

Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.ingemmet.gob.pe/Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/



Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit elev. 3283 m

KVERT reported that a plume comprised of re-suspended ash drifted about 230 km SE from the vicinity of the Sheveluch on 13 October. A thermal anomaly was identified in satellite images during 15-19 October. The Aviation Color Code remained at Orange.

Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php



Sinabung  | Indonesia  | 3.17°N, 98.392°E  | Summit elev. 2460 m

Based on observations by PVMBG, webcam and satellite images, and model data, the Darwin VAAC reported that during 17-18 and 21-23 October ash plumes from Sinabung rose 2.4-4.6 km (8,000-15,000 ft) a.s.l. and drifted in multiple directions.

Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/



Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m

OVSICORI-UNA reported that an event at Turrialba at 0825 on 20 October generated an ash plume that rose 300 m above the crater rim and drifted NW.

Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/









==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - http://www.iavcei.org/

To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.

==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux