VOLCANO: Smithsonian/USGS Weekly Volcanic Activity Report 15-21 December 2010

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




*************************************************************************************
Smithsonian/USGS Weekly Volcanic Activity Report 15-21 December 2010
From: "Kuhn, Sally" <KUHNS@xxxxxx>
*************************************************************************************

Smithsonian/USGS Weekly Volcanic Activity Report

15-21 December 2010

 

Sally Kuhn Sennert - Weekly Report Editor

kuhns@xxxxxx

URL: http://www.volcano.si.edu/reports/usgs/

 

 

New Activity/Unrest: | Kizimen, Eastern Kamchatka (Russia) | San Cristóbal, Nicaragua | Tengger Caldera, Eastern Java (Indonesia) | Tungurahua, Ecuador

 

Ongoing Activity: | Arenal, Costa Rica | Bulusan, Luzon | Dukono, Halmahera | Fuego, Guatemala | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaii (USA) | Kliuchevskoi, Central Kamchatka (Russia) | Poás, Costa Rica | Sakura-jima, Kyushu | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat | Suwanose-jima, Ryukyu Islands (Japan)

 

 

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

 

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.

 

 

New Activity/Unrest

 

 

KIZIMEN Eastern Kamchatka (Russia) 55.130°N, 160.32°E; summit elev. 2376 m

 

KVERT reported that seismicity at Kizimen decreased following the eruption on 13 December. Kronotsky National Park staff, residing at Ipuin about 16 km WSW, noted that the water level in Levaya Schapina river rose 60 cm after the explosions and remained elevated for the next two days. The water was also very muddy. During 14-17 December earthquake activity was above background levels and a thermal anomaly over the lava dome was detected in satellite imagery. The Aviation Color Code remained at Orange.

 

Geologic Summary. Kizimen is an isolated, conical stratovolcano that is morphologically similar to Mount St. Helens prior to its 1980 eruption. The summit of Kizimen consists of overlapping lava domes, and blocky lava flows descend the flanks of the volcano, which is the westernmost of a volcanic chain north of Kronotsky volcano. The 2,376-m-high Kizimen was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2,000-3,500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of longterm lava-dome growth have occurred. The latest eruptive cycle began about 3,000 years ago with a large explosion and was followed by lava-dome growth lasting intermittently about 1,000 years. An explosive eruption about 1,100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. A single explosive eruption, during 1927-28, has been recorded in historical time.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

SAN CRISTOBAL Nicaragua 12.702°N, 87.004°W; summit elev. 1745 m

 

According to the Washington VAAC, the San Cristóbal Volcano Observatory reported increased seismicity on 15 December and small near-summit plumes of gas and ash. Cloud cover prevented satellite observations of San Cristóbal. On 17 December a gas plume possibly containing some ash drifted less than 30 km N.

 

Geologic Summary. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1,745-m-high youngest cone, San Cristóbal itself (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km to the west of San Cristóbal; it and the eroded Moyotepe volcano, 4 km to the NE of San Cristóbal, are of Pleistocene age. Volcán Casita contains an elongated summit crater and lies immediately E of San Cristóbal; Casita was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the San Cristóbal complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

 

Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

 

 

TENGGER CALDERA Eastern Java (Indonesia) 7.942°S, 112.95°E; summit elev. 2329 m

 

Based on analyses of satellite imagery, the Darwin VAAC reported that on 20 December a possible ash plume from Tengger Caldera's Bromo cone rose to an altitude of 6.1 km (20,000 ft) a.s.l. and drifted about 95 km S. The area was partially obscured by meteorological cloud cover.

 

Geologic Summary. The 16-km-wide Tengger caldera in eastern Java is located at the northern end of a volcanic massif extending from Semeru volcano. The massive Tengger volcanic complex consists of five overlapping stratovolcanoes, each truncated by a caldera. The most recent is the 9 x 10 km wide Sandsea caldera, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most frequently visited and most active volcanoes. More than 50 mild-to-moderate explosive eruptions have occurred since 1804.

 

Sources: Darwin Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html,

 

 

TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m

 

The IG reported that during 14-15 December gas-and-ash plumes from Tungurahua rose to an altitude of 8 km (26,200 ft) a.s.l. and drifted SW, NE, and E. Slight ashfall was reported in Puto, 50 km E. Explosions caused "cannot shot" noises, and blocks rolled down the flanks. Incandescence from the crater was observed at night. The next day steam-and-gas plumes, with occasional pulses of ash, rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted E and W. Roaring was heard and ashfall was reported in Palictagua.

 

Although storm clouds occasionally prevented observations of the summit area, steam-and-gas plumes were seen during 17-18 and 21 December drifting S, SW, and W, and a plume was observed drifted S on 19 December. On 20 December ashfall was reported in areas to the N and NNW. Lahars descended the Mapayacu (SW) and Bramaderos drainages, carrying blocks up to 90 cm in diameter and depositing them in the Puela river to the S. Later that day, an explosion caused windows to vibrate in multiple areas. Incandescent blocks rolled 2 km down the flanks. A plume rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted W.

 

Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano.

 

Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/

 

 

Ongoing Activity

 

 

ARENAL Costa Rica 10.463°N, 84.703°W; summit elev. 1670 m

 

OVSICORI-UNA reported that during November, activity originating from Arenal's Crater C was at a low level and consisted of gas emissions, sporadic Strombolian eruptions, and occasional avalanches. Residents to the N, W, and S observed a decrease in gas emissions and nighttime incandescence from the crater. Acid rain and small amounts of ejected pyroclastic material affected the NE, E, and SE flanks. Crater D produced only fumarolic activity.

 

Geologic Summary. Conical Volcan Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1,657-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. The earliest known eruptions of Arenal took place about 7,000 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. Arenal's most recent eruptive period began with a major explosive eruption in 1968. Continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows has occurred since then from vents at the summit and on the upper western flank.

 

Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/

 

 

BULUSAN Luzon 12.770°N, 124.05°E; summit elev. 1565 m

 

On 17 December, PHIVOLCS reported that an explosion from Bulusan, recorded for about three minutes by seismographs, produced an ash-and-steam plume that rose 500 m above the crater and drifted SW. Steam rose from the NW and SE vents, and again from NW vents on 19 December.

 

Geologic Summary. Luzon's southernmost volcano, Bulusan, was constructed within the 11-km-diameter dacitic Irosin caldera, which was formed more than 36,000 years ago. A broad, flat moat is located below the prominent SW caldera rim; the NE rim is buried by the andesitic Bulusan complex. Bulusan is flanked by several other large intracaldera lava domes and cones, including the prominent Mount Jormajan lava dome on the SW flank and Sharp Peak to the NE. The summit of Bulusan volcano is unvegetated and contains a 300-m-wide, 50-m-deep crater. Three small craters are located on the SE flank. Many moderate explosive eruptions have been recorded at Bulusan since the mid-19th century.

 

Source: Philippine Institute of Volcanology and Seismology (PHIVOLCS) http://www.phivolcs.dost.gov.ph/

 

 

DUKONO Halmahera 1.68°N, 127.88°E; summit elev. 1335 m

 

Based on analyses of satellite imagery, the Darwin VAAC reported that on 21 December an ash plume from Dukono rose to an altitude of 2.7 km (9,000 ft) a.s.l. and drifted 55 km NW.

 

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

 

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html

 

 

FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m

 

On 17 December, INSIVUMEH reported that explosions from Fuego produced ash plumes that rose 300-800 m above the crater and drifted E and SE. Later that day the number of explosions increased, occurring at a rate of 12-15 per hour. Ash plumes rose 500-900 m above the crater and drifted E and NE. Ashfall was reported in Antigua Guatemala, 18 km NE, and San Juan Alotenango, 9 km ENE. On 20 December, weak explosions generated ash plumes that rose 500 m above the crater and drifted W and NW, and occasional rumbling noises.

 

Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua.

 

Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/

 

 

KARYMSKY Eastern Kamchatka (Russia) 54.05°N, 159.45°E; summit elev. 1536 m

 

KVERT reported that seismic activity at Karymsky was above background levels during 10-17 December. Seismic data suggested that possible ash plumes rose to an altitude of 5 km (16,400 ft) a.s.l. Thermal anomalies were detected in satellite imagery during 12-13 and 15 December. The Aviation Color Code level remained at Orange.

 

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m

 

During 15-21 December, HVO reported that activity at Kilauea continued from the summit caldera and the east rift zone. At the summit caldera, the level of the lava-pool surface in the deep pit within Halema'uma'u crater remained mostly stable at approximately 130 m below the crater floor, periodically rising 20-30 m higher. Nighttime incandescence has been visible from the Jaggar Museum on the NW caldera rim since early 2010. A plume from the vent drifted SW and SE, when visible through fog, and deposited ash and fresh spatter nearby.

 

At the east rift zone, lava that broke out of the Quarry tube onto the surface at a saddle between two rootless shields at around the 610 m elevation, continued to advance in two branches. The E branch advanced along the E edge of the Quarry flow to about the 60-m elevation and burned small remnants of a forest. Incandescence from a prominent but small spatter cone on the north-central part of the Pu'u 'O'o crater floor continued. Lava from a second spatter cone, located on the NW edge of the crater, flowed across the W side of the crater floor.

 

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

 

Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/

 

 

KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m

 

KVERT reported that during 10-17 December seismic activity at Kliuchevskoi did not exceed background levels. Steam-and-gas emissions were observed during 10-13 December. Satellite imagery showed a weak thermal anomaly over the crater on 11 and 12 December. The Aviation Color Code level was lowered to Yellow.

 

The Tokyo VAAC reported that on 20 December a possible eruption detected in satellite imagery produced a plume that rose to an altitude of 6.7 km (22,000 ft) a.s.l. and drifted N.

 

Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters.

 

Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php,

Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

 

 

POAS Costa Rica 10.20°N, 84.233°W; summit elev. 2708 m

 

OVSICORI-UNA reported that during November several phreatic eruptions from the central part of Laguna Caliente, a summit lake of Poás, ejected material that fell back into the lake, occasionally producing small waves. Dark-colored gas plumes rose a few meters to several tens of meters above the lake surface. The temperature of the lava dome was 630 degrees Celsius at accessible areas. Fumarolic plumes from the dome rose 1 km and drifted W and SW. Some foliage on the SW flank, about 3.5 km from the crater, showed signs of damage from gases.

 

Geologic Summary. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2,708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Poás eruptions often include geyser-like ejection of crater-lake water.

 

Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/

 

 

SAKURA-JIMA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m

 

Based on pilot observations, the Tokyo VAAC reported that on 18 December ash plumes from Sakura-jima rose to altitudes of 2.4-4.9 km (8,000-16,000 ft) a.s.l. and drifted SE. The next day satellite imagery showed that the ash had dissipated.

 

Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

 

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

 

 

SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m

 

KVERT reported that moderate seismic activity from Shiveluch was detected during 10-17 December and a bright thermal anomaly was observed in satellite imagery. Seismic data analysis suggested that ash plumes rose to an altitude of 5.2 km (17,100 ft) a.s.l. Strong gas-and-steam activity was observed during 9 and 11-14 December. On 14 December, an ash explosion produced an ash plume that rose to an altitude of 4.5 km (14,800 ft) a.s.l. and a 2-km-long pyroclastic flow. Satellite imagery showed an ash plume that drifted 230 km NE. The Aviation Color Code level remained at Orange.

 

Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. Intermittent explosive eruptions began in the 1990s from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.

 

Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php

 

 

SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m

 

MVO reported that during 10-17 December activity from the Soufrière Hills lava dome was at a low level. Several small pyroclastic flows descended gages valley to the W. The largest pyroclastic flow occurred on 15 December and travelled about 1.5 km. A small number of rockfalls occurred in the 11 February collapse scar. The Hazard Level remained at 3.

 

Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

 

Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms/

 

 

SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m

 

Based on information from JMA, the Tokyo VAAC reported an explosion from Suwanose-jima on 20 December. Details of possible a resulting plume were not reported.

 

Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884.

 

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

 
==============================================================

To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments.

==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux