VOLCANO: Bulletin of the Global Volcanism Network Volume 34, Number 11, November 2009

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



 
***********************************************************************************************
Bulletin of the Global Volcanism Network Volume 34, Number 11, November 2009
From: "Ed Venzke" <VENZKEE@xxxxxx>
***********************************************************************************************
 
Bulletin of the Global Volcanism Network
Volume 34, Number 11, November 2009
http://www.volcano.si.edu/

Bezymianny (Kamchatka) Lava dome growth and explosive 17 December 2009 eruption
Krakatau (Indonesia) Ongoing eruptive signals and earthquakes through 29 October 2009
Batur (Indonesia) September 2009 seismic increase after over 8 years of quiet
Manam (Papua New Guinea) Intermittent ash and glow at both craters during 2009
Karkar (Papua New Guinea) Tall November 2009 plumes from meteorological effects
Langila (Papua New Guinea) Strong ash explosions during 20-24 September 2009
Rabaul (Papua New Guinea) Intermittent ash plumes and incandescent ejections continue through 2009
Bagana (Papua New Guinea) Intermittent ash plumes through November 2009; active lava flow
Ambrym (Vanuatu) Frequent thermal anomalies from lava lakes during October 2008-September 2009
Concepcion (Nicaragua) Explosive ash eruptions in 2007, July 2008, and December 2009

Editors: Rick Wunderman, Edward Venzke, and Sally Kuhn Sennert
Volunteer Staff: Ludmila Eichelberger, Catie Carter, Hugh Replogle, Paul S. Berger, Russell Ross, Jacquelyn Gluck,
Robert Andrews, Margo Morell, and Stephen Bentley

 


Bezymianny
Kamchatka Peninsula, Russia
55.978°N, 160.587°E; summit elev. 2,882 m
All times are local (= UTC + 12 hours)

Dome growth continued at Bezymianny (figure 1) in the aftermath of the extensive eruption of 9 May 2006 (BGVN 31:04), with later eruptions on 12 May 2007 (BGVN 32:11) and a previously unreported substantial one on 19 August 2008. Another one occurred on 17 December 2009. This report covers the interval from August 2008 to mid-January 2010.

Figure 1. July 2009 aerial photo of Bezymianny showing the eroded outer S flank in the foreground, the dome in the mid-ground, and Kamen volcano in the distance. The fresh 2009 lava flow (black) moves down the dome towards the viewer. Courtesy of Pavel Izbekov (Alaska Geophysical Institute).

Explosion of 19 August 2008. The explosion produced an ash plume that rose to ~ 9 km altitude and drifted 1,200 km W. Staff at a seismic station ~ 50 km W reported ashfall and the smell of volcanic gas. Analysis of satellite imagery revealed thermal anomalies on the lava dome during 14-15 and 18-21 August 2008. Moreover, the thermal anomalies enlarged just before the 19 August explosion.

Thermal images and photos. During much of the interval September to December 2009, satellite images depicted thermal anomalies of 1-2 pixels in the crater area. These occurred, for example, 21 and 30 May, and 2-4, 7, and 11-14 June 2009. After the 17 December 2009 eruption (discussed below) more pixels appeared through mid-January 2010). When the volcano was visible, weak fumarolic emissions rose 50 m and blew NE to E.

A 5 September 2009 photograph of Bezymianny (figure 2) shows the volcano's famous horseshoe-shaped crater rim formed during sector collapse in a 1956 eruption. A lava flow traveled down the steaming lava dome.

Figure 2. An aerial photo taken at an oblique high-angle at Bezymianny, showing active lava flows moving down slope on the dome and moderate degassing occurring at the summit. View from the E side. Photo taken 5 September 2009 by Sergey Ushakov (IV&S FED RAS).

Seismicity. During the reporting interval, instruments recorded only a few seismic events. They took place on 13 October 2008, M 1.35 (Ks 4.2); on 5 June 2009, M 1.65 (Ks 4.8); on 24 June 2009, M 1.25 (Ks 4.0); on 5 August 2009, M 2.0 (Ks 5.5); and on 12 October 2009, M 2.1 (Ks 5.7). That said, the record of the volcano's seismicity was hard to decifer between 21 October 2008 and 16 January 2009 because of strong overriding signals from an eruption nearby at Kliuchevskoi. A large number of hypocenters were registered beneath Kliuchevskoi between 21 April and 17 November 2009 (figure 3).

Figure 3. Seismicity of Kamchatka's Northern group of volcanoes (Shiveluch, Kliuchevskoi, Ushkovsky, Krestovsky, Bezymianny, Tolbachik) recorded during April-November 2009. Map (left) shows location and depths of earthquakes (white line is cross-section AB). Cross-section shows hypocenters projected onto the vertical plane along AB. Courtesy of the Kamchatka Branch of the Geophysical Service of the Russian Academy of Sciences (KB GS RAS).

17 December 2009 eruption. Bezymianny's eruption began at 0945 on 17 December (2145 UTC on 16 December). From Atlasovo village, almost 100 km to the S, observers saw an unusually large ash cloud in a shape newspaper reporters described as reminiscent of a mushroom-cloud from a nuclear blast.

KVERT estimated the ash column height to be ~ 15 km altitude, extending to the NW, and stretching more than 350 km from the volcano. The plume's width was at least 35 km. The plume's axis passed over Kozyrevsk village where the ash thickness reached 2-3 mm (figure 4). With approach to Bezymianny, ashfall was plentiful.

Figure 4. Deposit of Bezymianny ash in Kozyrevsk village area as photographed on 17 December 2009. One frame (a) shows a cottage with ash over snow-covered landscape (2-3 mm thickness); the other (b) shows close up of ash layer on top of snow. Courtesy of Yuri Demyanchuk (KVERT).

The Geophysical Service reported that seismicity was at normal background levels during 1-5 December and gradually increased from 6 December to 16 December 2009. According to satellite data, thermal anomalies registered during 14 December 2009 to mid-January 2010 (figure 5). Thick deposits of pyroclastic flows and related tephra lay on the volcano's slopes. The large amount of material erupted suggested that a crater formed on the dome.

Figure 5. A plot showing the thermal anomalies detected at Bezymianny during 14 December 2009 to 10 January 2010. Plot made from AVO and KB GS RAS data.

Ash plumes soon ceased, but steam was abundant. During 18 December observers noted a gas-steam emission stretching 30 km NW. On 20-22 December, steam plumes reached 10-30 km to the S.

Thermal anomalies were detected extending from the crater down onto the E flank starting at 2315 (1115 UTC) on 17 December that lasted at least 85 minutes, into the 18th. More anomalies were present during satellite passes on 21-23 December, with the last MODVOLC alerts recorded during 25-26 December 2009.

Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny volcano had been considered extinct. The modern Bezymianny volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an ancestral volcano that was built between about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of Mount St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanology and Seismology (IV&S) Far East Division, Russian Academy of Sciences (FED RAS), Kamchatka Branch of the Geophysical Service of the Russian Academy of Sciences (KB GS RAS), Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia (Email: kvert@xxxxxxxxx, URL: http://www.kscnet.ru/ivs; http://emsd.iks.ru/~ ssl/monitoring/main.htm), Sergei Ushakov, IV&S FED RAS; Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the University of Alaska's Geophysical Insitute, and the Alaska Division of Geological & Geophysical Surveys (URL: http://www.avo.alaska.edu/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); Pravda On-Line (URL: http://www.pravda.ru/news/accidents/19-12-2009/1004964-volcano-0/); RIA Novosti News (URL: http://www.rian.ru/).


Krakatau
Indonesia
6.102°S, 105.423°E; summit elev. 813 m
All times are local (= UTC + 7 hours)

Our previous report on Krakatau (BVGN 35:05) covered activity from October 2007 to 18 June 2009, discussing an increase in seismicity and eruptions that began in late March 2009 after a 7-month gap in MODVOLC thermal alerts. This report chiefly focuses on activity during 3 July 2009 through 29 October 2009 based on Volcanic Ash Advisory Centre (VAAC) reports and monitoring from coastal Java at the Pasauran observation post in Banten province.

As an overview of hazard status during the past few years, the Center of Volcanology and Geological Hazard Mitigation (CVGHM) noted that starting 3 July 2008, Anak Krakatau had been at Alert Level 2 (Waspada). On 25 March 2009 activity increased significantly, with the recording of 19 eruptions. Eruptive activity then continued without pause until 6 May 2009 when the hazard status was elevated to Alert Level 3 (Siaga). Based on a decline in seismic and eruptive activity, on 31 October CVGHM decreased the status to Level 2.

The Darwin Volcanic Ash Advisory Center (VAAC) reported that a pilot observed an ash plume at 1948 (local time) on 3 July 2009 that rose to altitude below 3 km. The VAAC did not detected the plume on satellite imagery.

According to CVGHM, activity steadily declined during August and to at least as late as 29 October 2009 (table 1). Visual observations of the summit were often obstructed by fog, although a gray cloud rising as high as 1,300 m above the summit was observed at a clear moment on one undisclosed day in August. Booming eruptive sounds were recorded 49 times in August and once in September.

Table 1. Seismically detected signals at Krakatau, including tremor and earthquake, registered by the Pasauran observation post during August 2009 through 29 October 2009. Instrument locations were discussed in BVGN 32:09 (although the status of these stations was not discussed). Where reported the table also presents ranges of amplitudes (in millimeters, mm), duration (in seconds, sec.), and S-wave minus P-wave arrival times (S-P). Courtesy of CVGHM.

   Month(2009)
          Eruptive signals
          Air signals
          Tremor events
          Shallow volcanic earthquakes
          Deep volcanic earthquakes

   Aug    4,311 (amplitude 3-46 mm, duration 7-114 sec.)
          2,394 (2-22 mm, 10-140 sec.)
            886 (2-46 mm, 5-547 sec.)
          2,649 (2-20 mm, 2-18.5 sec.)
              9 (18-37 mm, 6-25 sec., S-P 0.5-2 sec.)

   Sep      541 (amplitude 7-45 mm, duration 8-226 sec.) Latest 18 September.
            356 (2-20 mm, 11-161 sec.)
            278 (6-46 mm, 35-635 sec.)
            721 (2-20 mm, 2-17 sec.)
             17 (15-45 mm, S-P 0.5-2.5 sec.)

   Oct       34 (amplitude 6-63mm, duration 15-195 sec.) Only 26 October.
             16 (4-23 mm, 13-81 sec.)
             --
            159 (2.5-26 mm, 2.5-14 sec.)
             20 (12-65 mm, 6-27 sec., S-P 0.5-2.5 sec.)

CVGHM also reported two major seismic events over the reporting period at distance from Krakatau with little discernable impact there. On 16 August 2009 at 1438, a tectonic earthquake originating on the southern side of Pulau Siberut island, located ~ 900 km to the NW of Krakatau, was recorded with a magnitude of 6.9. On 16 October 2009, a tectonic earthquake originating from Ujung Kulon-Jawa Barat, located at the W tip of Java, occurred with a magnitude of 6.4. CVGHM stated that the volcanic seismic signals at Krakatau following the earthquakes on 16 August and 16 October do not indicate an increase in volcanism.

Frequent MODVOLC thermal alerts were recorded during 1 April to 31 August 2009.

Geologic Summary. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 A.D., formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://portal.vsi.esdm.go.id/joomla/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/).


Batur
Lesser Sunda Islands, Indonesia
8.242°S, 115.375°E; summit elev. 1,717 m

The Center of Volcanology and Geological Hazard Mitigation (CVGHM) reported that seismicity at Batur (figure 6) increased from September 2009 to 7 November 2009, and the number of earthquakes increased significantly on 8 November (table 2). During this period, sulfurous plumes were ejected from the craters. The Alert Level was raised to 2 (on a scale of 1-4). This seismic activity was the first noted at Batur since 2001, when a series of mild earthquakes occurred (BGVN 26:09).

Figure 6. Panorama of Batur caldera showing the ~ 7-km-long lake in the SE part of the caldera along with the cental topographic high composed of intracaldera cones. Copyrighted photo courtesy of  "tropicaLiving" taken on 9 April 2008.

Table 2. Number of different types of earthquakes registered at Batur between September 2009 and 8 November 2009. *Through 1830 local time on 8 November. Data from CVGHM.

   Date(2009)        Deep      Shallow       Low
                   volcanic    volcanic    frequency

   September          21          11          13
   October            28          20          15
   1-7 November       12           7           7
   8 November*         5          53          --

Geologic Summary. The historically active Batur volcano is located at the center of two concentric calderas NW of Agung volcano. The outer 10 x 13.5 km wide caldera was formed during eruption of the Bali (or Ubud) Ignimbrite about 29,300 years ago and now contains a caldera lake on its SE side, opposite the satellitic cone of 2,152-m-high Gunung Abang, the topographic high of the Batur complex. The inner 6.4 x 9.4 km wide caldera was formed about 20,150 years ago during eruption of the Gunungkawi Ignimbrite. The SE wall of the inner caldera lies beneath Lake Batur; Batur cone has been constructed within the inner caldera to a height above the outer caldera rim. The 1,717-m-high Batur stratovolcano has produced vents over much of the inner caldera, but a NE-SW fissure system has localized the Batur I, II, and III craters along the summit ridge. Historical eruptions have been characterized by mild-to-moderate explosive activity sometimes accompanied by lava emission. Basaltic lava flows from both summit and flank vents have reached the caldera floor and the shores of Lake Batur in historical time.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://portal.vsi.esdm.go.id/joomla/); tropicaLiving (http://www.flickr.com/photos/tropicaliving/).


Manam
Northeast of New Guinea, Papua New Guinea
4.080°S, 145.037°E; summit elev. 1,807 m

The volcano was generally quiet between 2 April 2008 and 26 January 2009, with intermittent ash plumes and vapor emissions (BGVN 34:01). This same pattern of activity at Manam continued through the rest of 2009.

Glow from Main and Southern craters was reported again during January-April, July, September, and October. Thermal anomalies near the summit were recorded by the MODVOLC system on 29 June, 16 July, 8-9 and 17 August, 26 September, and 4 October.

Emissions from both craters during February 2009 consisted of white vapor. A dull glow was visible at night from both craters on 23 and 25 February. Occasional night-time glow was observed in March.

Both Main and Southern craters released variable white vapor on most days in April, seen when the summit was clear. Steady glow from Main Crater was observed on the nights of 6, 17, and 26 April. The earthquake recorder was repaired on 5 April 2009. Seismic activity remained at low level, with the number of daily volcanic earthquakes ranging between 610 and 980 events.

The Darwin VAAC reported that on 13 May an ash plume rose to an altitude of 3 km and drifted ~ 20 km SE. Another ash plume on 8 June rose to an altitude of 2.4 km and drifted ~ 40 km NW.

Mild eruptive activity at Southern Crater began on 11 July. Southern Crater released diffuse white vapor during 1-9 and 14-15 July. Diffuse pale-gray ash clouds were reported on 11 July and from 16 July until the end of the month. The ash plumes rose less than 1 km above the summit before being blown downwind and causing fine ashfall. Weak roaring noises were heard from 18 to 21 July, and fluctuating glow was visible at night on 19, 23-24, and 28-29 July. Main Crater released variable amounts of white vapor on most days in July; however, pale-gray ash clouds were emitted during the last three days of the month. Occasional glow was visible at night on 24 July. Seismic activity was low to moderate, dominated by low-frequency volcanic earthquakes (800 to 1,000 events/day).

Mild eruptions again occurred at Southern Crater on 3-4 September and gray ash clouds rose 600-700 m above the summit. The ash clouds were then blown NW, resulting in fine ashfall on that side of the island. At other times white vapor was released from both craters, accompanied at times by diffuse blue vapor from Southern Crater. Occasional glow was visible from Southern Crater on 2, 9, and 16 September, and from Main Crater on 18, 19, and 23 September. Seismicity remained low to moderate until the seismic system developed power problems on 17 September. Daily totals for the low-frequency earthquakes ranged between 210 and 1,010. No high-frequency earthquakes were recorded.

During October, a steady glow from the two craters began on the 7th. The glow at Southern Crater lasted for a week, while at Main Crater it continued until 20 October.

The Darwin VAAC reported that during 1-2 November ash plumes rose to an altitude of 2.1 km and drifted 35-55 km NW and N. On 12 December an eruption plume rose to an altitude of 3 km and drifted 75 km N; meteorological clouds prevented identification of ash in imagery after the initial advisory was issued.
Geologic Summary. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1,807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys," regularly spaced 90 degrees apart, channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE avalanche valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded at Manam since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea (Email: hguria@xxxxxxxxxxxxx); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/).


Karkar
Northeast of New Guinea, Papua New Guinea
4.649°S, 145.964°E; summit elev. 1,839 m
All times are local (= UTC + 10 hours)

No information about activity at Karkar has been included in reports from the Rabaul Volcano Observatory (RVO) since December 2007 (BGVN 33:03) when there were roaring noises and gas emissions from the Bagai cone. Ash advisories were issued to aviators on 25-26 November 2009 based on satellite analyses, but ground observers did not see any activity. Later interpretations were that some increased activity from the volcano, but not an explosive eruption, caused the plume formation seen in satellite imagery. Such reports do occur at times due to the limited ability to rapidly communicate with some remote locations, and where operational agencies must issue warnings on short notice for safety reasons.

Satellite observations. The Darwin Volcanic Ash Advisory Center (VAAC) interpreted satellite imagery taken at 1132 (0132 UTC) on 25 November 2009 as showing an ash plume rising to an altitude of 13.7 km before merging with a thunderstorm to the W an hour later (figure 7). Although this activity was not noticed immediately, it was seen during an imagery review later in the day; an ash advisory was issued at 1839 (0839 UTC) and RVO was notified. Another eruption was reported the next morning at 0832 (2232 UTC, 25 November), with an ash plume to 9.1 km altitude, based on analysis of MTSAT-1R satellite data. Meteorological clouds prevented additional observations.

Figure 7. Visible satellite imagery of Karkar on 25 November 2009 showing a convective cloud over the volcano at 1132 (0132 UTC), and a plume-like structure W of the island at 1232 (0232 UTC). Satellite image originally processed by the Australian Bureau of Meteorology from the geostationary satellite MTSAT-1R, operated by the Japan Meteorological Agency. Courtesy of the Darwin VAAC.

Rebecca Patrick and Andrew Tupper provided the following as context for the issuance of an ash advisory in situations like this, as follows: "Explosive eruptions have often occurred in the region with virtually identical satellite signatures, so it is difficult to change VAAC practice and we apologise for any false alarms of highly explosive eruptions. The only way to reduce these without also reducing the probability of detection is to effectively link ground-based monitoring with remote sensing observations, and Darwin and Rabaul have been working cooperatively towards that [end].

"One of the scenarios that Darwin VAAC often deals with is that lower-level volcanic activity is thought to be able to trigger deep meteorological convection in the right moist and conditionally unstable environment, which is present for much of the year in our part of the tropics (deep meteorological convection in the tropics regularly ascends to 15-18 km). The 'volcanic thunderstorms' described by Oswalt and others (1994) following the Pinatubo eruption [where rising heat from the vent and deposits created vertical instability to trigger local storms after the eruption] are the best known example of this and were examined further by Tupper and others (2005, 2009). Depending on the size of the eruption, such clouds may or may not contain measurable amounts of volcanic material.

"Based on the repeated genesis of convection from the summit of Karkar, resulting in the plume-like structure seen on the imagery, the observations kindly relayed by Rabaul Volcano Observatory suggesting mild volcanic activity but no eruption, and analysis of the remote sensing data, we believe the most likely explanation on this occasion is that deep meteorological convection was generated by mild volcanic activity at Karkar, and the clouds created had no measurable ash content."

Ground observations reported by government officials. After being informed by a telephone call from the Darwin VAAC of a possible eruption at Karkar, the Rabaul Volcano Observatory attempted, without success, to obtain confirmation from people on Karkar Island. Communication was established with the District Administrator (DA), who was visiting Madang Town. The DA reported that his family had described no unusual events when he talked to them around 1800 that evening, and instructed one of his officers to inspect around the island later that night.

When reports were received between 0800 and 0900 on the morning of 26 November there was no indication of an eruption; there was no glow, no audible noises, and no reported ashfall. However, that morning a villager in Mom did report seeing dense white to gray vapor in the active crater area. Apparently the volume of vapor had increased almost a week earlier, following a felt earthquake. Additional information received by RVO a couple of days later indicated dead vegetation S of the active crater; similar observations had been made in late 2007. The only unusual observation was a couple of new 'holes' in the crater area, but no clear descriptions of the holes were given.

Ground observations reported by local residents. In a 4 December posting on his blog site, as well as commentary on "The Volcanism Blog" and the "Eruptions" blog, Jan Messersmith provided valuable eye-witness observations from his vantage point in Madang, ~ 60 km SSW of Karkar, where he had a direct view of the volcano from his home. Messersmith had seen no activity, though the volcano was slightly obscured by clouds, after being notified by a friend in Port Moresby that a large ash eruption was reportedly underway. He spoke with friends on the island by telephone on 26 November and they reported no activity. On 28 November Messersmith viewed Karkar from a boat located ~ 50 km from the volcano, but also saw no signs of activity. Nobody in the area was reporting an eruption, despite boats traveling to and from the island.

However, during several weeks in either April or May 2009, Messersmith had seen what appeared to be steam emissions, along with a brownish atmospheric stratification of gas or very fine ash that stretched for many kilometers downwind.

Geologic Summary. Karkar is a 19 x 25 km wide, forest-covered island that is truncated by two nested summit calderas. The 5.5-km-wide outer caldera was formed during one or more eruptions, the last of which occurred 9000 years ago. The eccentric 3.2-km-wide inner caldera was formed sometime between 1,500 and 800 years ago. Parasitic cones are present on the northern and southern flanks of basaltic-to-andesitic Karkar volcano; a linear array of small cones extends from the northern rim of the outer caldera nearly to the coast. Most historical eruptions, which date back to 1643, have originated from Bagiai cone, a pyroclastic cone constructed within the steep-walled, 300-m-deep inner caldera. The floor of the caldera is covered by young, mostly unvegetated andesitic lava flows.

References: Oswalt, J. S., Nichols, W., and O'Hara, J.F., 1996, Meteorological observations of the 1991 Mount Pinatubo eruption, in Fire and Mud: eruptions and lahars of Mount Pinatubo, Philippines, C. G. Newhall and R. S. Punongbayan (eds.): Philippines Institute of Volcanology and Seismology & University of Washington Press, p. 625-636.

Tupper, A., Oswalt, J.S., and Rosenfeld, D., 2005, Satellite and radar analysis of the volcanic-cumulonimbi at Mt Pinatubo, Philippines, 1991: Journal of Geophysical Research, v. 110, doi:10.1029/2004JD005499.

Tupper, A., Textor, C., Herzog, M., Graf, H.-F., and Richards, M., 2009, Tall clouds from small eruptions: the sensitivity of eruption height and fine ash content to tropospheric instability: Natural Hazards, v. 51, p. 375-401.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea (Email: hguria@xxxxxxxxxxxxx); Rebecca Patrick and Andrew Tupper, Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jan Messersmith, Madang - Ples Bilong Mi (URL: http://www.messersmith.name/wordpress/); The Volcanism Blog (URL: http://volcanism.wordpress.com/); Eruptions (URL: http://scienceblogs.com/eruptions/).


Langila
New Britain, Papua New Guinea
5.525°S, 148.42°E; summit elev. 1,330 m

Although the Rabaul Volcano Observatory (RVO) reported ash eruptions and glow as late as 23 February 2008 (BGVN 33:02), subsequent available reports did not include Langila until July 2008. That report noted weak emissions of light gray ash clouds during 1-6 July, followed by white vapor for the remainder of the month, with no glow observed. Activity at Langila was again not described in available observatory reports until September 2009, and thermal anomalies were noted in early October 2009.

Vulcanian activity occurred from Crater 2 throughout September and the first week of October. From the beginning of September emissions consisted of light brown to dense pale white/gray ash clouds that rose 800-1,000 m above the crater rim. Occasional roaring and rumbling noises were heard. This eruptive episode produced significant amounts of ash, primarily affecting areas NW, W, and SW of the volcano.

Stronger activity during 20-24 September consisted of dense dark gray ash clouds and some incandescent ejections. Plumes rose 2,000-3,000 m above the rim during this period. The emissions also produced continuous roaring noises and booming explosion sounds. Some lightning discharges accompanied the explosions. GNS of New Zealand and the Darwin VAAC detected very strong airborne sulfur dioxide (SO2) in satellite data on 26 September. On-site observations did not indicate strong activity that day, so it was thought to have been from the 20-24 September activity.

Emissions subsided on 25 September to the previous level, and continued during the first week of October, then declined to continuous white-gray ash clouds. This type of activity, with plume heights around 600 m, continued with minor variations until the end of October. The audible noises declined to occasional weak roaring after the first week of October. Night-time glow was also visible throughout September and October.

Some plumes during this episode extended great distances downwind, prompting aviation warnings. Based on analyses of satellite imagery, the Darwin VAAC reported that on 12 September an ash plume rose to an altitude of 3 km and drifted 35 km W. On 29 September ash plumes rose to altitudes of 2.4-4.3 km and drifted 75-220 km NW. Another ash plume the next day drifted 260 km NW at an altitude of 4.3 km. A diffuse ash plume on 5 October rose to an altitude of 3 km and drifted 185 km N.

Thermal anomalies identified in MODIS data were recorded on 10, 22, and 26 September, and 5-6 October. MODVOLC alert pixels appeared to be located outside of the crater on the ENE slope.

Geologic Summary. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea (Email: hguria@xxxxxxxxxxxxx); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/).


Rabaul
New Britain, Papua New Guinea
4.271°S, 152.203°E; summit elev. 688 m

Eruptive activity at the Tavurvur cone at Rabaul continued during September-December 2009. This caldera has been frequently active since September 1994, and most recently the activity has consisted of intermittent ash explosions and ejection of incandescent lava fragments (BGVN 34:08). The volcano is monitored by staff at the Rabaul Volcano Observatory (RVO). They work closely with the Darwin Volcanic Ash Advisory Center, who use their satellite imagery analysis capabilities to track plumes downwind and warn aviators of volcanic hazards.

Mild eruptive activity at Tavurvur in September was characterized by emissions of pale gray, and sometimes dark gray, ash plumes. Roaring and rumbling noises that were heard frequently during the first half of September gradually declined, and by the last week of the month had virtually ceased. The strong explosions that began about 20 August continued during the first two weeks of September. Occasional glow was visible at night during September with some small projections of incandescent lava fragments observed on some nights.

RVO reported that during 25 September-8 October gray ash plumes rose 2 km above the crater. Ashfall was reported in Rabaul town (3-5 km NW) and surrounding areas. Occasionally, incandescence from the summit crater was seen at night and incandescent lava fragments were ejected. During the second week of October ash emissions became more diffuse, with occasional long periods of white vapor. During October, occasional dull glow was visible during the first week only. Low roaring and rumbling noises were heard during the second and last weeks of October.

Based on analyses of satellite imagery, the Darwin VAAC reported that on 6 October an ash plume rose to an altitude of 3 km and drifted 55 km NW. A similar plume on 9 October rose to an altitude of 2.4 km and drifted 75 km NW. On 15, 18, and 20 October, ash plumes rose to altitudes of 2.7-3 km and drifted 25-85 km NW, W, and NE. Ash plumes during 28-29 October rose to an altitude of 2.4 km and drifted 35-45 km N, E, and SE.

Seismicity in September was dominated by high-frequency signals associated with roaring and rumbling noises, overshadowing low-frequency signals from ash emissions. Seismic activity during October was associated mainly with the ash emissions and rumbling noises. No high- frequency earthquakes were recorded during September and October. Ground deformation data from the GPS and tide gauge stations generally showed deflation during the first three weeks of September. In October the data showed a slow deflationary trend.

On 9 November an ash plume rose to an altitude of 1.8 km and drifted 110 km NW. During 11-14 November ash plumes rose to an altitude of 2.4 km and drifted 75-150 km NW and W. On 19 November ash plumes rose to an altitude of 2.1 km and drifted 35-90 km NW. During 20-26 November dense white plumes and gray ash plumes rose from Tavurvur. Strong explosions produced ash plumes that rose 1.5 km above the summit and showered the flanks with lava fragments that were incandescent at night. Shock waves rattled windows in the Kokopo area, ~ 20 km SE. Occasional incandescence from the summit crater was noted.

Dense white plumes and gray ash plumes rose above Tavurvur during 27 November-3 December. Strong explosions produced ash plumes that rose 1.5 km above the summit and showered the flanks with lava fragments that were incandescent at night. Shock waves rattled windows in the Kokopo area. Incandescence from the summit crater was occasionally noted. During 2-4 December, ash fell in Rabaul town (3-5 km NW) and other villages downwind. Activity consisted of a few strong explosions towards the beginning of the 4-10 December reporting period, and emissions of gray ash afterwards. Diffuse white vapor was emitted during quieter intervals. Ash plumes rose 1 km above the summit and drifted SE towards Tokua and the Tokua airport, causing suspension of some flights. Based on analyses of satellite imagery, the Darwin VAAC reported that during 5 and 7-8 December ash plumes rose to an altitude of 2.4 km and drifted 45-55 km E; on 14 December another ash plume drifted 35 km SE.

No emissions from the crater was observed on most days during 21-31 December, although there were occasional white steam plumes or blue plumes. On 23 December ash emissions rose less than 200 m above the cone. The Darwin VAAC reported that on 31 December an ash plume rose to an altitude of 2.4 km and drifted less than 30 km SE.

Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims of Rabaul. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea (Email: hguria@xxxxxxxxxxxxx); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Bagana
Bougainville Island, Papua New Guinea
6.140°S, 155.195°E; summit elev. 1,750 m
All times are local (= UTC + 11 hours)

The eruptive activity at Bagana that began in September 2000 continued through late 2009. As previously reported, lava flows and ash emissions occurred during 2008 through at least mid-December (BGVN 33:03 and 33:11). Similar activity, confirmed by visual observations and satellite data, continued through the end of 2009.

Based on analysis of satellite imagery, the Darwin VAAC reported ash plumes on 17 and 29-31 December 2008. Intermittent ash plumes continued to be reported throughout 2009 based on both satellite imagery and visual observations (table 3). Thermal anomalies identified in MODIS data (figure 8) were also intermittent throughout 2009. The frequency and number of daily alert pixels was higher during 1 June-10 August.

Table 3. Ash plumes from Bagana seen on satellite imagery or by visual observations during 2009. Courtesy of the Darwin VAAC and RVO.

   Date           Altitude    Direction    Remarks

   17 Dec 2008     3 km            W       --
   29 Dec 2008      --             W       Extended 75 km
   30 Dec 2008     2.4 km         NW       --
   31 Dec 2008     2.4 km         --       --
   26 Apr 2009     2.4 km          S       Extended 28 km
   02 May 2009     3 km           NE       Extended 55 km
   04 May 2009     2.4 km         NE       Extended 45 km
   02 Jun 2009     2.4 km          W       Extended 75 km
   27 Jun 2009     2.4 km         SW       Extended 110 km
   19 Jul 2009     1.8 km         NW       Extended 100 km
   20 Jul 2009      --            --       Dense gray ash clouds
   26 Jul 2009      --            --       Dense gray ash clouds
   30 Jul 2009      --            --       Dense gray ash clouds
   10 Aug 2009     3 km           NW       Diffuse ash plume extended 55 km
   19 Aug 2009     2.1 km          W       Extended 90 km
   09 Sep 2009      --            --       Light-gray ash emissions
   10 Sep 2009      --            --       Light-gray ash emissions
   12 Sep 2009     2.4 km         NW       Extended 37 km
   13 Sep 2009     2.4 km          W       Extended 65 km
   16 Sep 2009      --            --       Light-gray ash emissions
   17 Sep 2009     2.4 km        W, SW     Extended 46 km
   18 Sep 2009     2.4 km       SW, NW     Extended 37 km
   19 Sep 2009     2.4 km         NW       Extended 28 km
   09 Oct 2009     2.4 km         SW       Extended 45 km
   15 Oct 2009     2.1 km         SW       Extended 55 km
   12 Nov 2009     3 km           SW       Extended 65 km

Figure 8. Maximum number of daily thermal alert pixels at Bagana as identified by the MODVOLC system during 2009. Data comes from MODIS instruments on both Aqua and Terra satellites; the total shown is the maximum pixels per satellite per pass on a given day (UTC). Courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System.

Activity continued at a low level during February 2009 with white vapor emissions from the summit. Occasional loud booming noises were heard between 6 and 13 February. Collapses from the edge of an active lava flow resulted in glowing lava fragments moving down the SW flank that were visible at night on 7 February.

During April both the Main Crater and the Northwest Vent released moderate volumes of white vapor. The emissions from Northwest Vent ceased on 14 April. A single moderately loud booming noise was heard on 23 April from the Main Crater. Intermittent ash plumes extending in various directions were reported by the Darwin VAAC on 26 April, on 2 and 4 May, and again on 2 and 27 June.

July 2009 emissions from the summit crater consisted of white vapor. Single loud booming noises were heard on 15, 16, and 20 July. An ash plume reported by the Darwin VAAC extended 100 km NW on 19 July, and RVO noted dense gray ash clouds on 20, 26, and 30 July. A weak glow was visible on most nights during the month. The lava flow was reported active only on 1 July, when collapses from the leading edge resulted in rapid movement of glowing lava fragments on the SW flank.

During August the Darwin VAAC reported ash plumes on the 10th and 19th. RVO noted that the summit was obscured by atmospheric clouds throughout the first week of September. After that it was clear on most days until the end of October. Activity consisted of dense white emissions, except for 9, 10, and 16 September when small amounts of light gray ash were released. Occasional weak glow was observed on the 9th, but moderately bright glow was seen during 16, 19, 21, and 26 September. More ash plumes were seen in satellite imagery during 12-13 and 17-19 September.

Glow was observed on 3 October, which seems to have been associated with the dislodging of lava fragments from the active flow. Discrete booming noises were heard on 2, 4, and 9 October. The Darwin VAAC reported ash plumes on 9 and 15 October, and 12 November.

Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. Bagana is a massive symmetrical, roughly 1750-m-high lava cone largely constructed by an accumulation of viscous andesitic lava flows. The entire lava cone could have been constructed in about 300 years at its present rate of lava production. Eruptive activity at Bagana is frequent and is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50-m-thick with prominent levees that descend the volcano's flanks on all sides.

Information Contacts: Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea (Email: hguria@xxxxxxxxxxxxx); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/), Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/).


Ambrym
Vanuatu
16.25°S, 168.12°E; summit elev. 1,334 m

Lava lake activity in both summit craters at Ambrym has been documented by the frequent presence of thermal anomalies, detected by MODIS instruments and processed by MODVOLC, between 21 October 2008 and 24 September 2009 (figure 9). Prior to this eruptive episode, the active lava lakes caused detectible thermal anomalies in November 2006 (BGVN 32:05), January-July 2007 (BGVN 34:01), and October-December 2007 (BGVN 34:01).

Figure 9. Maximum number of daily thermal alert pixels at Ambrym as identified by the MODVOLC system, 2005-2009. Mapping of the pixels revealed thermal activity at both summit craters. Data comes from MODIS instruments on both Aqua and Terra satellites; the total shown is the maximum pixels per satellite per pass on a given day (UTC). Courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System.

Ash plumes reported on 25-26 March 2009 resulted in advisories to aviators issued by the Wellington Volcanic Ash Advisory Centre (VAAC). The airport control tower in Port Vila, Vanuatu, informed the VAAC on 25 March of an ash plume that rose to an altitude of 2.1 km and drifted about 55 km S. A pilot report the next day noted "smoke" rising to 2.4 km altitude. Although ash was not visible on satellite imagery analyzed by the VAAC on those days, thermal anomalies were seen in MODIS data on 25 March.

Additional plumes described by the NASA Earth Observatory were seen in visible MODIS imagery on 6 October and 3 December 2009. On both days the light-colored plume initially drifted 65 km WNW towards Malekula island. On 6 October the plume became a broad diffuse plume that spread hundreds of kilometers NW across the Coral Sea.

Geologic Summary. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides arc. A thick, almost exclusively pyroclastic sequence, initially dacitic, then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major plinian eruption with dacitic pyroclastic flows about 1900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the caldera floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/).


Concepcion
Nicaragua
11.538°N, 85.622°W; summit elev. 1,700? m

Recent volcanism at Concepcion has consisted of small ash explosions that take place intermittently, often many months apart. Four months of quiet ended with crater explosions on 9 February, 8 April, and 22 April 2007 (BGVN 32:07). Ash-bearing eruptions were later reported by the Nicaraguan Institute of Territorial Studies (INETER) during June-July 2007, November-December 2007, July 2008, and December 2009.

INETER noted two small explosions on 5 June 2007 that caused ashfall in Moyogalpa, along the W coast. A larger explosion took place on the morning of 10 July 2007. Most of the tephra from the 10 July explosion fell into the lake, forming what looked like a wall to distant observers. Material that fell on land caused the burning of crops, especially in areas to the W (figure 10), such as Moyogalpa. During 24-25 July fieldwork was conducted by INETER staff and visiting scientists. Fragments of rocks thrown by the 10 July explosion reached diameters of up to 7-10 cm. The lithic fragments were basaltic, with many crystals, including some plagioclase, but no juvenile material was identified.

Figure 10. Map of Concepcion (NE end of Ometepe Island in Lake Nicaragua) showing areas of projected ashfall (caida de ceniza) and ballistic bombs (caidad de balistico). The five large dots, extending from the crater W towards Moyogalpa, indicate where ejected rock actually fell during the 10 July 2007 explosion. Ash also fell within the zone identified as being at risk for ashfall. N is towards the top; for scale, an E-W line through the summit and across this part of the island is 14.5 km long. After Delgado and Navarro (2002), from El Nuevo Diario (11 July 2007); courtesy of INETER.

On 24 November 2007 another episode of volcanic activity began, with gas emissions followed by two moderate explosions from the main crater. Ash was blown downwind and deposited in small amounts on Ometepe Island and in Bethlehem, Potosi, and Buenos Aires. Activity decreased after about two hours that day, but ash-and-gas explosions continued until the first week of December. Seismicity remained strong throughout December 2007. On 20 December there was another small explosion followed by emission of gas and ash. Civil Defense reported that the ash was deposited in small amounts on Ometepe Island and was transported by the wind towards the towns of San Jorge, Belen, Potosi and Buenos Aires.

Low levels of seismicity continued, but there were no explosions recorded, during January-June 2008. On 30 July 2008 the seismic station located in the Concepcion volcano recorded a strong seismic event. Civil Defense officials in the city of Rivas reported that at that time there had been two explosions, ten minutes apart, that caused minor ashfall in Moyogalpa and La Concha. No additional volcanic activity was reported in 2008.

As during the second half of 2008, no explosive activity was reported during 2009 until mid-December. Citing INETER, news media reported that an eruption of gas and ash on the morning of 11 December rose up to ~ 150 m high. Ash fell to the SW in the towns of Los Angeles, Esquipulas and San Jose del Sur.

Geologic Summary. Volcan Concepcion is one of Nicaragua's highest and most active volcanoes. The symmetrical basaltic-to-dacitic stratovolcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua and is connected to neighboring Madera volcano by a narrow isthmus. A steep-walled summit crater is 250 m deep and has a higher western rim. N-S-trending fractures on the flanks of the volcano have produced chains of spatter cones, cinder cones, lava domes, and maars located on the NW, NE, SE, and southern sides extending in some cases down to Lake Nicaragua. Concepcion was constructed above a basement of lake sediments, and the modern cone grew above a largely buried caldera, a small remnant of which forms a break in slope about halfway up the north flank. Frequent explosive eruptions during the past half century have increased the height of the summit significantly above that shown on current topographic maps and have kept the upper part of the volcano unvegetated.

Reference: Delgado, G.H., and Navarro, M., 2002, Mapa de amenaza volcanica, Volcan Concepcion: Geofisica UNAM/Mexico, JICA, Instituto Mexicano de Cooperacion Internacional.

Information Contacts: Instituto Nicaraguense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/geofisica/geofisica.html); Agence-France Presse (URL: http://www.afp.com/).\
 
============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx

To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux