********************************************************* SI/USGS Weekly Volcanic Activity Report 14-20 January 2009 ********************************************************* Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Dieng Volcanic Complex, Central Java (Indonesia) | Poás, Costa Rica | Rabaul, New Britain (SW Pacific) Ongoing Activity: | Barren Island, Andaman Islands (Indian Ocean) | Chaitén, Southern Chile | Dukono, Halmahera (Indonesia) | Fuego, Guatemala | Galeras, Colombia | Karymsky, Eastern Kamchatka | Kilauea, Hawaii (USA) | Kliuchevskoi, Central Kamchatka (Russia) | Llaima, Central Chile | Nevado del Huila, Colombia | Sakura-jima, Kyushu (Japan) | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat | Tungurahua, Ecuador The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest DIENG VOLCANIC COMPLEX Central Java (Indonesia) 7.20°S, 109.92°E; summit elev. 2565 m CVGHM reported that on 15 January two minor phreatic eruptions from Dieng's Sibanteng crater ejected material that fell within a 50 m radius. The ejecta and a landslide dammed up an area of the Kali Putih River. The Alert Level was raised to 2 (on a scale of 1-4) due to increased activity from Dieng and the potential for flash flooding from a dam breach. Geologic Summary. The Dieng plateau in the highlands of central Java is renowned both for the variety of its volcanic scenery and as a sacred area housing Java's oldest Hindu temples, dating back to the 9th century AD. The Dieng volcanic complex consists of two or more stratovolcanoes and more than 20 small craters and cones of Pleistocene-to-Holocene age over a 6 x 14 km area. Prahu stratovolcano was truncated by a large Pleistocene caldera, which was subsequently filled by a series of dissected to youthful cones, lava domes, and craters, many containing lakes. Lava flows cover much of the plateau, but have not occurred in historical time, when activity has been restricted to minor phreatic eruptions. Toxic volcanic gas emission has caused fatalities and is a hazard at several craters. The abundant thermal features that dot the plateau and high heat flow make Dieng a major geothermal prospect. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/ POAS Costa Rica 10.20°N, 84.233°W; summit elev. 2708 m OVSICORI-UNA reported that on 8 January an M 6.2 earthquake occurred about 10 km E of Poás at a depth of 6 km. About 20 people were killed and dozens were missing due to faulting and landslides. Scientists performing geophysical measurements at the crater on 8 January observed numerous landslides and rockfalls from the inner walls around the active crater, and in the N sector of the main crater. New fractures opened on the E rim and fumarolic activity, from a pyroclastic dome S of the lake in the active crater, increased. Over 1,500 aftershocks were recorded during 8-9 January. On 12 January, scientists observed the rise of black sediment in the crater lake, and a phreatic eruption that ejected sediment and water about 15 m in height, within the crater. The area of the eruption was about 50 m in diameter. Geologic Summary. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2,708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Poás eruptions often include geyser-like ejection of crater-lake water. Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/ RABAUL New Britain (SW Pacific) 4.271°S, 152.203°E; summit elev. 688 m Based on analysis of satellite imagery, the Darwin VAAC reported that during 14-18 January ash plumes from Rabaul caldera's Tavurvur cone rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted N, NE, SE, and SW. On 16 January, RVO reported that gray ash plumes rose above the crater and dispersed slowly to the E. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Sources: Ima Itikarai, Rabaul Volcano Observatory (RVO), Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html Ongoing Activity BARREN ISLAND Andaman Islands (Indian Ocean) 12.278°N, 93.858°E; summit elev. 354 m Based on analysis of satellite imagery, the Darwin VAAC reported that during 18-19 January ash plumes from Barren Island rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted NNE and NE. Geologic Summary. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The 354-m-high island is the emergent summit of volcano that rises from a depth of about 2,250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the W, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. The morphology of a fresh pyroclastic cone that was constructed in the center of the caldera has varied during the course of historical eruptions. Lava flows fill much of the caldera floor and have reached the sea along the western coast during historical eruptions. Source: Darwin Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html CHAITEN Southern Chile 42.833°S, 72.646°W; summit elev. 1122 m SERNAGEOMIN reported that seismicity from Chaitén increased during 9-12 January. The unstable slopes of Domo Nuevo 2 and spine collapses continued to produce block-and-ash flows. Based on SIGMET notices, analysis of satellite imagery, and web camera views, the Buenos Aires VAAC reported that on 15, 17, 19, and 20 January ash plumes rose to altitudes 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted NE, E, and SE. A small thermal anomaly was detected in satellite imagery on 19 January. Geologic Summary. Chaitén is a small, glacier-free caldera with a Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. A pyroclastic-surge and pumice deposit considered to originate from the eruption that formed the elliptical 2.5 x 4 km wide summit caldera was dated at about 9400 years ago. A rhyolitic, 962-m-high obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km away from the volcano to the north and south. The caldera is breached on the SW side by a river that drains to the bay of Chaitén, and the high point on its southern rim reaches 1122 m. Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/, Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html DUKONO Halmahera (Indonesia) 1.68°N, 127.88°E; summit elev. 1335 m Based on analysis of satellite imagery, the Darwin VAAC reported that on 18 January ash plumes from Dukono rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted NE and N. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m Based on information from the Central American FIR, the Washington VAAC reported that on 14 January an ash plume from Fuego rose to an altitude of 4.9 km (16,000 ft) a.s.l. and drifted WSW. On 19 and 20 January, INSIVUMEH reported that explosions produced ash plumes that rose to altitudes of 4.1-4.6 km (13,500-15,100 ft) a.s.l. and drifted 7 km NW, W, and SW. Some explosions produced rumbling sounds. Avalanches occurred on the S and SW flanks. Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html GALERAS Colombia 1.22°N, 77.37°W; summit elev. 4276 m INGEOMINAS reported that during 14-15 and 17-19 January some grayish plumes from Galeras rose to altitudes below 5.7 km (18,700 ft) a.s.l. and drifted S and SW. Geologic Summary. Galeras, a stratovolcano with a large breached caldera located immediately W of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic Galeras volcanic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Longterm extensive hydrothermal alteration has affected the volcano. This has contributed to large-scale edifice collapse that has occurred on at least three occasions, producing debris avalanches that swept to the W and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors. Source: Instituto Colombiano de Geología y Minería (INGEOMINAS) http://www.ingeominas.gov.co// KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that during 10-14 January seismic activity at Karymsky was above background levels and ash-and-gas explosions possibly occurred; seismic activity was not evaluated on 8 and 9 January due to technical issues. Analysis of satellite imagery revealed a thermal anomaly in the crater during 8-12 and 14-15 January. Gas-and-steam plumes drifted 25 km SE and NE on 8 and 12 January. Based on analysis of satellite imagery and information from the Yelizovo Airport (UHPP), the Tokyo VAAC reported that on 16 January an ash plume rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted SE. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m HVO reported that during 14-20 January lava flowed SE through a tube system from underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex, reaching the Waikupanaha ocean entry. Surface flows were noted on the coastal plain and incandescence was seen on the pali. Explosions at the ocean entry were seen on 17 and 18 January. Variable winds caused the County Viewing Area to close during 14-16 January. The vent in Halema'uma'u crater continued to produce a predominantly white plume that drifted mainly SW. Variable winds occasionally caused poor air quality around the summit; on 16 January sulfur dioxide concentrations in the air reached unsafe levels. On 17 January, a geologist near the vent heard rockfalls, and rock impact and rushing sounds. Vent rim collapses the next day caused a dusting of fine tephra, and on 20 January faint incandescence from deep within the vent was noted. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m KVERT reported that seismic activity at Kliuchevskoi was above background levels during 9-16 January. Gas-and-steam plumes rose to an altitude of 6.8 km (22,300 ft) a.s.l. and drifted about 50 km S and E. Strombolian activity was noted on 9 and 10 January. Analysis of satellite imagery revealed a large daily thermal anomaly in the crater and gas-and-steam plumes that drifted 70 km W on 12 January. The Level of Concern Color Code remained at Orange. Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php LLAIMA Central Chile 38.692°S, 71.729°W; summit elev. 3125 m Based on observations from POVI (Projecto Observación Visual Volcán Llaima), SERNAGEOMIN reported that weak ash emissions rose from Llaima's crater on 11 January. Geologic Summary. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other to the SE. The massive 3,125-m-high, glacier-covered stratovolcano has a volume of 400 cu km. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following eruption of the 24 cu km Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7,200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century. Source: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/ NEVADO DEL HUILA Colombia 2.93°N, 76.03°W; summit elev. 5365 m INGEOMINAS reported that during 18-19 January continuous emissions from Nevado del Huila were observed on the web camera, and produced white plumes that rose to heights less than 1 km above the summit. The Alert Level remained at Orange (the second highest on a four-color scale). According to news reports, authorities in Colombia announced on 19 January the decision to relocate the town of Páez (population of about 4,000), currently about 27 km SSE of Nevado del Huila, due to the town's proximity to the Páez river and the volcano. Several populations have been affected by lahars generated by glacier melting from the volcanic activity. Geologic Summary. Nevado del Huila, the highest active volcano in Colombia, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. Two glacier-free lava domes lie at the southern end of the Huila volcanic complex. The first historical eruption from this little known volcano took place in the 16th century. Two persistent steam columns rise from the central peak, and hot springs are also present. Sources: Instituto Colombiano de Geología y Minería (INGEOMINAS) http://www.ingeominas.gov.co//, Reuters http://us.lrd.yahoo.com/_ylt=A0LEUFg2KXZJ8nIBKFWl784F/SIG=15vnittdo/EXP=1232566966/**http%3A//www.google.com/url%3Fsa=X%26q=http%3A//lta.reuters.com/article/domesticNews/idLTASIE50J1F320090120%26ct=ga%26cd=8qwROdVL9vg%26usg=AFQjCNGHgXVN9pgtT3w5b5jHogXxnOIP9Q SAKURA-JIMA Kyushu (Japan) 31.585°N, 130.657°E; summit elev. 1117 m Based on information from JMA, the Tokyo VAAC reported that on 15 January an explosion from Sakura-jima produced a plume that rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted SE. Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was above background levels during 9-16 January. Based on interpretations of seismic data, ash plumes rose to altitudes of 7.3 km (23,900 ft) a.s.l. and 6.9 km (22,600 ft) a.s.l. on 9 and 14 January, respectively, and to an altitude of 5.5 km (18,000 ft) a.s.l. on the other days during the reporting period. Observers reported that ash plumes rose to an altitude of 3.5 km (11,500 ft) a.s.l. on 9 January and noted gas-and-steam activity during 8-10 and 12-14 January. Analysis of satellite imagery revealed a large daily thermal anomaly over the lava dome and gas-and-steam plumes that drifted about 70 km S, SE, and NE during 9-11 and 13 January. The Level of Concern Color Code remained at Orange. Based on information from KEMSD, the Tokyo VAAC reported that on 18 January an eruption produced a plume that rose to an altitude of 5.8 km (19,000 ft) a.s.l. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that during 9-16 January activity from the Soufrière Hills lava dome was at a low level; seismicity was low, rockfalls were minimal, and lava-dome incandescence at night was absent. The Hazard Level remained at 4. Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m The IG reported that during 13 and 15-16 January steam-and-ash plumes from Tungurahua rose to altitudes of 6-7 km (19,700-23,000 ft) a.s.l. and drifted W and NW; cloud cover often prevented visual observations on the other days during 14-20 January. Ashfall was reported, almost daily, in areas to the N, W, and SW. Roaring and explosions were occasionally reported. Incandescence in the crater was noted at night on 15, 18, and 19 January. On 16 January, a small lahar descended a drainage to the S. On 19 January, fumaroles in the crater were observed. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================