*********************************************************** SI/USGS Weekly Volcanic Activity Report 4-10 June 2008 *********************************************************** Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Cerro Azul, Isabela I | Soputan, Sulawesi (Indonesia) Ongoing Activity: | Arenal, Costa Rica | Chaitén, Southern Chile | Colima, México | Karymsky, Eastern Kamchatka | Kilauea, Hawaii (USA) | Rabaul, New Britain (SW Pacific) | Sakura-jima, Kyushu (Japan) | Santa María, Guatemala | Semeru, Eastern Java (Indonesia) | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat | Tungurahua, Ecuador | Ubinas, Perú The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest CERRO AZUL Isabela I 0.92°S, 91.408°W; summit elev. 1640 m Based on field observations, the IG reported on 5 June that the initial eruption on 29 May from the SE flank of Cerro Azul issued from three fissures. Six 'a'a lava flows up to 5 m thick flowed rapidly from a fissure near the caldera; one of the flows reached the next fissure at a lower elevation. A 1-km-long fissure in the central part of the flank emitted multiple lava flows up to 15 m thick. Activity at a third fissure at the lower flank, also about 1 km in length, produced cones and several lava flows. On 3 June, new thermal anomalies on the SE flank detected in satellite imagery increased in intensity and migrated E in later images. Incandescence in the same area was also noted by ground observers. On 4 June an overflight confirmed the presence of a new vent. A fissure about 400-500 m long emitted lava flows that traveled towards the S coast of Isabela. Blocks were ejected about 60 m above the vents. A VAAC report indicated that an eruption plume drifted 50 km N. On 5 June, thermal anomalies were present on satellite imagery. Geologic Summary. Located at the SW tip of the J-shaped Isabela Island, Cerro Azul contains a steep-walled 4 x 5 km nested summit caldera complex that is one of the smallest diameter, but at 650 m one of the deepest in the Galápagos Islands. The 1640-m-high shield volcano is the second highest of the archipelago. A conspicuous bench occupies the SW and west sides of the caldera, which formed during several episodes of collapse. Youthful lava flows cover much of the caldera floor, which has also contained ephemeral lakes. A prominent tuff cone located at the ENE side of the caldera is evidence of episodic hydrovolcanism at Cerro Azul. Numerous spatter cones dot the western flanks of the volcano. Fresh-looking lava flows, many erupted from circumferential fissures, descend the NE and NW flanks of the volcano. Historical eruptions date back only to 1932, but Cerro Azul has been one of the most active Galápagos volcanoes since that time. Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ SOPUTAN Sulawesi (Indonesia) 1.108°N, 124.73°E; summit elev. 1784 m CVGHM reported that during May, deformation from Soputan was detected. During 1-6 June, seismicity increased. On 6 June, a pyroclastic flow possibly generated by a rockfall avalanche traveled about 1.5 km down the E flank. The Alert Level was raised to 3 (on a scale of 1-4). Residents and tourists were advised not go within a 6 km radius of the summit. Based on observations of satellite imagery, the Darwin VAAC reported that an ash plume rose to an altitude of 13.7 km (45,000 ft) a.s.l. on 6 June and drifted SW. Geologic Summary. The small conical volcano of Soputan on the southern rim of the Quaternary Tondano caldera is one of Sulawesi's most active volcanoes. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924. Sources: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/, Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html Ongoing Activity ARENAL Costa Rica 10.463°N, 84.703°W; summit elev. 1670 m OVSICORI-UNA reported that an incandescent avalanche descended Arenal's SW flank on 6 June producing an 800-m-long scar and depositing a wide debris fan at the base of the volcano. A plume of dust, ash, and gas drifted W and NW, depositing fine ash in a small area downwind. The plume panicked tourists and park rangers 2 km away to the W. The park was immediately closed for the day and the tourists were evacuated. According to a news article, another incandescent avalanche descended the SW flank on 10 June and generated an ash plume. Authorities evacuated people in the area. Geologic Summary. Conical Volcan Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1,657-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. The earliest known eruptions of Arenal took place about 7,000 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. Arenal's most recent eruptive period began with a major explosive eruption in 1968. Continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows has occurred since then from vents at the summit and on the upper western flank. Sources: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/, Nacion http://www.nacion.com/ln_ee/2008/junio/10/sucesos1573230.html CHAITEN Southern Chile 42.833°S, 72.646°W; summit elev. 1122 m SERNAGEOMIN reported that during an overflight of Chaitén on 3 June, the lava dome appeared more extensive and voluminous as compared to previous observations. About 2500 hectares (6,200 acres) of forest on the N and NE flanks of the volcano were burned by pyroclastic flows or lateral explosions. During 3-10 June ash-and-steam plumes rose to a maximum altitude of 3 km (10,000 ft) a.s.l. and drifted SE. Abundant steam plumes were noted. The Alert Level remained at Red. Based on observations of satellite imagery, SIGMET reports, and pilot observations, the Buenos Aires VAAC reported that during 4-9 June continuous ash plumes rose to altitudes of 1.8-7.3 km (6,000-24,000 ft) a.s.l. and drifted NNE, NE, E, and ESE. According to a news article, commercial flights continued to be disrupted in multiple areas. Geologic Summary. Chaitén is a small, glacier-free caldera with a Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. A pyroclastic-surge and pumice deposit considered to originate from the eruption that formed the elliptical 2.5 x 4 km wide summit caldera was dated at about 9400 years ago. A rhyolitic, 962-m-high obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km away from the volcano to the north and south. The caldera is breached on the SW side by a river that drains to the bay of Chaitén, and the high point on its southern rim reaches 1122 m. Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/, Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html, Diario EL CHUBUT http://www.elchubut.com.ar/index.php?option=com_content&task=view&id=7491&Itemid=2 COLIMA México 19.514°N, 103.62°W; summit elev. 3850 m Although visual observations were occasionally limited due to cloud cover during 3-9 June, ash and steam plumes from Colima were spotted and rose to altitudes of 4-4.8 km (13,100-15,700 ft) a.s.l. Plumes drifted SW, S, SE, and E. Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth. Source: Gobierno del Estado de Colima http://www.colima-estado.gob.mx/2006/seguridad/indvolcan.php KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that seismic activity at Karymsky was slightly above background levels during 1-4 June and at background levels the other days during 30 May-6 June. Gas-and-ash explosions that produced plumes to an altitude of 2.3 km (7,500 ft) a.s.l. may have occurred during days of slightly elevated seismicity. Observations of satellite imagery revealed thermal anomalies in the crater during 1-4 June and a gas-and-steam plume that drifted 61 km SE on 2 June. The Level of Concern Color Code remained at Orange. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m Based on visual observations from HVO crews and web camera views, HVO reported that during 4-10 June lava flowed SE through a lava tube system underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex to the Waikupanaha ocean entry. Incandescence was occasionally noted from the TEB vent area. Gas continued to jet from a vent about 30 m below Pu'u 'O'o crater's E rim. The sulfur dioxide emission rate was generally high and fluctuated between 1,530 and 3,080 tonnes per day when measured on 3, 5, 6, and 9 June. The background rate was about 2,000 tonnes per day when measured on 25 May and earlier. During the reporting period, Kilauea summit earthquakes were located beneath the summit, along the S-flank fault, and along SW rift zones. An average of 10-20 small earthquakes (not located) were detected daily. The eruption from the vent in Halema'uma'u Crater continued to produce white plumes with minor ash content that drifted mainly SW. During the night incandescence was seen at the base of the plume. Seismic tremor was elevated. The sulfur dioxide emission rate was high and fluctuated between 680 and 1,160 tonnes per day when measured during 3-9 June. The background rate was 150-200 tonnes per day. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ RABAUL New Britain (SW Pacific) 4.271°S, 152.203°E; summit elev. 688 m RVO reported that during 2-5 June periodic explosions from Rabaul caldera's Tavurvur cone were followed by short-lived ash plumes and steam plumes. During 5-10 June, plumes with little to no ash were emitted, loud roaring was almost continuous, and nighttime incandescence was noted. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Steve Saunders, Rabaul Volcano Observatory (RVO) SAKURA-JIMA Kyushu (Japan) 31.585°N, 130.657°E; summit elev. 1117 m Based on information from JMA, the Tokyo VAAC reported that on 9 June eruption plumes from Sakura-jima rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted S. Explosions were reported on 10 and 11 June. Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m INSIVUMEH reported that lahars caused by heavy rainfall descended multiple drainages on Santa María on 3 June. On 9 June, a lahar about 15 m wide and up to 2 m deep descended S down the Nima I river, carrying blocks up to 1 m in diameter and smelling of sulfur. Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars. Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/ SEMERU Eastern Java (Indonesia) 8.108°S, 112.92°E; summit elev. 3676 m CVGHM reported that pyroclastic flows and rockfall avalanches from Semeru detected by the seismic network declined in frequency during 22 May-3 June. On 22 May, four pyroclastic flows traveled a maximum distance of 2.5 km from the active crater. Visual observations of smaller rockfalls detected during the rest of the reporting period were inhibited by fog, but were observed to travel 200-300 m from the active crater. Based on visual observations and the decline in seismic activity, CVGHM lowered the Alert Level to 2 (on a scale of 1-4) on 5 June. Geologic Summary. Semeru is the highest volcano on Java and one of its most active. The symmetrical stratovolcano rises abruptly to 3,676 m above coastal plains to the S and lies at the southern end of a volcanic massif extending N to the Tengger caldera. Semeru has been in almost continuous eruption since 1967. Frequent small-to-moderate Vulcanian eruptions have accompanied intermittent lava dome extrusion, and periodic pyroclastic flows and lahars have damaged villages below the volcano. A major secondary lahar on 14 May 1981 caused more than 250 deaths and damaged 16 villages. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/ SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was slightly above background levels on 29 and 30 May and at background levels during 31 May-6 June. Gas-and-ash explosions may have occurred on 29-30 May and 3 June, possibly sending plumes to an altitude of 3.6 km (11,800 ft) a.s.l. According to video footage and visual observations, moderate fumarolic activity was noted during 31 May and 1-5 June. Observations of satellite imagery revealed a daily thermal anomaly in the crater, and a gas-and-steam plume that drifted 20 km WNW on 31 May. The Level of Concern Color Code remained at Orange. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported no evidence of lava-dome growth at Soufrière Hills during 31 May-6 June. Seismic activity remained low. The Alert Level remained elevated at 4 (on a scale of 0-5). Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms/ TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m IG reported that on 2 June, two small explosions from Tungurahua were detected by the seismic network and ashfall was reported in areas on the SW flank. During 3-9 June, both activity at the summit and seismicity declined significantly. Ash-and-steam plumes rose to an altitude of 5.2 km (17,100 ft) a.s.l. during 4-5 June and drifted W and SW. A steam plume was visible on 8 June. Cloudy weather inhibited visual observations on other days during 3-10 June. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ UBINAS Perú 16.355°S, 70.903°W; summit elev. 5672 m Based on a SIGMET report and observations of satellite imagery, the Buenos Aires VAAC reported that on 7 June an ash plume from Ubinas rose to an altitude of 7.3 km (24,000 ft) a.s.l. and drifted S. Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread Plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions. Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================