******************************************************** SI/USGS Weekly Volcanic Activity Report 16-22 April 2008 ******************************************************** Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Ibu, Halmahera (Indonesia) | Krakatau, Indonesia Ongoing Activity: | Arenal, Costa Rica | Batu Tara, Komba Island (Indonesia) | Fuego, Guatemala | Karymsky, Eastern Kamchatka | Kilauea, Hawaii (USA) | Rabaul, New Britain (SW Pacific) | Sakura-jima, Kyushu (Japan) | Santa María, Guatemala | Semeru, Eastern Java (Indonesia) | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat | Suwanose-jima, Ryukyu Islands (Japan) | Tungurahua, Ecuador | Ubinas, Perú The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest IBU Halmahera (Indonesia) 1.488°N, 127.63°E; summit elev. 1325 m CVGHM reported that seismicity from Ibu increased during 6-14 April and remained elevated during 15-20 April. Plumes described as "eruption smoke" rose to altitude of 1.8-2.1 km (5,900-6,900 ft) a.s.l. during 12-21 April and were gray during 18-21 April. The Alert Level was increased to 3 (on a scale of 1-4) on 21 April. Residents and tourists were not permitted within 2 km of the crater. Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the western flank. A group of maars is located below the northern and western flanks of the volcano. Only a few eruptions have been recorded from Ibu in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/ KRAKATAU Indonesia 6.102°S, 105.423°E; summit elev. 813 m CVGHM reported that seismicity from Anak Krakatau increased during 14-21 April; the number of events per day peaked on 20 April. Ash plumes accompanied by propelled incandescent rocks were noted during field observations on 16, 17, and 18 April. The eruption affected the summit and the E and S flanks. Booming noises were reported and occasionally heard at an observation post 42 km away. The Alert Level was raised to 3 (on a scale of 1-4) on 21 April. Geologic Summary. Renowned Krakatau volcano lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 AD, resulted in a 7-km-wide caldera. Remnants of this volcano formed Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. The post-collapse cone of Anak Krakatau (Child of Krakatau), constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan, has been the site of frequent eruptions since 1927. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/ Ongoing Activity ARENAL Costa Rica 10.463°N, 84.703°W; summit elev. 1670 m In March, activity originating from Arenal's Crater C consisted of gas emissions, sporadic Strombolian eruptions, and occasional avalanches from lava-flow fronts that traveled down the SW flanks. Volcanic activity was at relatively low levels and few eruptions occurred. Acid rain and small amounts of ejected pyroclastic material affected the NE and SE flanks. Eruptions produced ash plumes that rose about 2.2 km (7,100 ft) a.s.l. Small avalanches of volcanic material traveled down several ravines. Crater D showed only fumarolic activity. Geologic Summary. Conical Volcan Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1,657-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. The earliest known eruptions of Arenal took place about 7,000 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. Arenal's most recent eruptive period began with a major explosive eruption in 1968. Continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows has occurred since then from vents at the summit and on the upper western flank. Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/ BATU TARA Komba Island (Indonesia) 7.792°S, 123.579°E; summit elev. 748 m The Darwin VAAC reported that low-level ash-and-steam plumes from Batu Tara were observed on satellite imagery during 20-21 April. Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow. Source: Darwin Volcanic Ash Advisory Centre http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m INSIVUMEH reported that explosions (1-2 per hour) from Fuego produced ash plumes to altitudes of 4.3-4.7 km (14,100-15,400 ft) a.s.l. during 15-21 April. The plumes drifted 5-8 km SW and ashfall was reported from areas downwind. The explosions produced rumbling and degassing sounds, and shock waves that rattled windows and structures 5-15 km away. The Washington VAAC reported that multiple ash plumes were visible on satellite imagery during 18-19 April and drifted mainly SW. Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that seismic activity at Karymsky was above background levels during 11-18 April. Based on seismic interpretation, weak ash-and-gas explosions or hot avalanches may have occurred daily during 10-14. Observations of satellite imagery revealed that a thermal anomaly was present in the crater on 12 and 13 April. Based on information from KEMSD, the Tokyo VAAC reported that an eruption plume rose to an altitude of 3.7 km (12,000 ft) a.s.l. on 22 April. Ash was not detected on satellite imagery. The Level of Concern Color Code remained at Orange. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m Based on observations during helicopter overflights, visual observations from HVO and National Park Service (NPS) crews, and web camera views, HVO reported that during 16-22 April lava flowed SE through a lava tube system underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex to the Waikupanaha ocean entries. The Ki ocean entry was inactive during 19-22 April. Occasionally, incandescence from breakouts along the lava-tube system was noted. During the reporting period, Kilauea summit earthquakes were located beneath Halema'uma'u Crater, beneath Napau Crater, along the S-flank faults, and along the upper E and SW rift zones. The eruption from the vent in Halema'uma'u Crater continued to produce white ash plumes that drifted mainly SW. During most nights incandescence was seen at the base of the plume. On 16 April, a small explosion from the vent ejected ash onto the overlook parking lot and on a portion of Crater Rim drive. Seismic tremor was elevated. Sulfur dioxide emission rates from the summit area have been elevated at 2-4 times background values since early January. The emission rate fluctuated between 870 and 1150 tonnes per day during 15-21 April, compared to a background rate of 150-200 tonnes per day. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ RABAUL New Britain (SW Pacific) 4.271°S, 152.203°E; summit elev. 688 m During 18-19 April, the Darwin VAAC reported that low-level ash-and-steam plumes from Rabaul were observed on satellite imagery drifting ESE. According to the VAAC, RVO advised that ash eruptions continued and rocks were expelled during explosions. RVO reported several explosions on 21 April. Billowing ash plumes drifted W and SE during 21-23 April, and caused ashfall about 2 km away in N Matupit on 22 April and areas downwind on 23 April. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Sources: Steve Saunders, Rabaul Volcano Observatory (RVO), Darwin Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html SAKURA-JIMA Kyushu (Japan) 31.585°N, 130.657°E; summit elev. 1117 m Based on pilot reports and observations of satellite imagery, the Tokyo VAAC reported that an ash plume from Sakura-jima rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted 100 km E on 19 April. The next day, the JMA reported that a plume rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted SW. Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m INSIVUMEH reported explosions from Santa María's Santiaguito lava dome complex during 15-21 April. Resultant ash plumes rose to altitudes of 4.1-4.7 km (13,500-15,400 ft) a.s.l. and drifted SW. Constant avalanches on the W and S flanks were noted. Based on observations of satellite imagery, the Washington VAAC reported that an ash plume drifted SW on 18 April. Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html SEMERU Eastern Java (Indonesia) 8.108°S, 112.92°E; summit elev. 3676 m Based on pilot observations, the Darwin VAAC reported that a plume from Semeru rose vertically to an altitude of 6.1 km (20,000 ft) a.s.l. on 21 April. Geologic Summary. Semeru is the highest volcano on Java and one of its most active. The symmetrical stratovolcano rises abruptly to 3,676 m above coastal plains to the S and lies at the southern end of a volcanic massif extending N to the Tengger caldera. Semeru has been in almost continuous eruption since 1967. Frequent small-to-moderate Vulcanian eruptions have accompanied intermittent lava dome extrusion, and periodic pyroclastic flows and lahars have damaged villages below the volcano. A major secondary lahar on 14 May 1981 caused more than 250 deaths and damaged 16 villages. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was slightly above background levels during 10-15 April and at background levels on 16 April. According to video footage and visual observations, fumarolic activity from the lava dome occurred during 12-15 April. Based on seismic interpretation, a possible ash plume rose to an altitude of 3 km (9,800 ft) a.s.l. on 14 April. Observations of satellite imagery revealed that a thermal anomaly was present in the crater during 11-14 April. The Level of Concern Color Code remained at Orange. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that during 4-18 April the lava dome at Soufrière Hills changed very little, based on measurable parameters. Overflights on 9 and 16 April revealed that the E side of the lava dome continued to erode and exposed more resistant solid material below. A small pyroclastic flow traveled 500 m down the E flank on 10 April and generated a small ash plume that quickly dissipated to the W. Two more pyroclastic flows were observed on 16 April. The larger flow traveled 1 km down the E flank and was followed by relatively strong degassing. The Alert Level remained elevated at 4 (on a scale of 0-5). Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m Based on information from JMA, the Tokyo VAAC reported that an explosion from Suwanose-jima occurred on 16 April. The altitude and direction of a possible resultant plume were not reported. Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m The IG reported that although visual observations were mostly limited due to cloud cover during 16-22 April, ash-and-steam plumes from Tungurahua were spotted on 16, 20, and 21 April and rose to altitudes of 6-8 km (19,700-26,200 ft) a.s.l. Strombolian activity at the crater was noted at night on 15 and 20 April. During 16-19 April, explosions were registered by the seismic network. Ash plumes drifted W and SW; ashfall was reported in areas downwind during 19, 20, and 21 April. On 21 April a lahar disrupted the Ambato-Baños route for a few hours. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ UBINAS Perú 16.355°S, 70.903°W; summit elev. 5672 m Based on pilot reports, SIGMET reports, and observations of satellite imagery, the Buenos Aires VAAC reported that ash plumes from Ubinas rose to altitudes of 5.5-7.6 km (18,000-25,000 ft) a.s.l. and drifted ESE and NE during 19-22 April. Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread Plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions. Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================