************************************************************* GVP/USGS Weekly Volcanic Activity Report 20-26 February 2008 Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ ************************************************************* New Activity/Unrest: | Lopevi, Vanuatu (SW Pacific) | Veniaminof, Alaska Peninsula Ongoing Activity: | Anatahan, Mariana Islands (Central Pacific) | Cleveland, Chuginadak Island | Kerinci, Sumatra (Indonesia) | Kilauea, Hawaii (USA) | Llaima, Central Chile | Ol Doinyo Lengai, Tanzania | Popocatépetl, México | Rabaul, New Britain (SW Pacific) | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat | St. Helens, Washington (USA) | Tungurahua, Ecuador | Ubinas, Perú The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest LOPEVI Vanuatu (SW Pacific) 16.507°S, 168.346°E; summit elev. 1413 m Based on a pilot report, the Wellington VAAC reported that an ash plume from Lopevi rose to an altitude of below 3 km (10,000 ft) a.s.l. on 24 February. Geologic Summary. The small 7-km-wide conical island of Lopevi is one of Vanuatu's most active volcanoes. A small summit crater containing a cinder cone is breached to the NW and tops an older cone that is rimmed by the remnant of a larger crater. The basaltic-to-andesitic volcano has been active during historical time at both summit and flank vents, primarily on the NW and SE sides, producing moderate explosive eruptions and lava flows that reached the coast. Historical eruptions at the 1,413-m-high volcano date back to the mid-19th century. The island was evacuated following eruptions in 1939 and 1960. The latter eruption, from a NW-flank fissure vent, produced a pyroclastic flow that swept to the sea and a lava flow that formed a new peninsula on the western coast. Source: Wellington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html VENIAMINOF Alaska Peninsula 56.17°N, 159.38°W; summit elev. 2507 m AVO reported that on 22 February several minor ash bursts from Veniaminof were recorded by the seismic network and observed on web camera footage. The bursts rose to an altitude of below 2.7 km (9,000 ft) a.s.l. but fallout was confined to the crater. Sporadic increases in seismic activity were noted since 11 February, including tremor episodes that lasted 1-2 minutes and occurred several times per hour. The Aviation color code was raised to Yellow and the Alert Level was raised to Advisory. Steam plumes emitted from the intra-caldera cinder cone were seen on video footage during 23-25 February and seismic levels were elevated during 23-26 February. Geologic Summary. Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the N, is deeply notched on the W by Cone Glacier, and is covered by an ice sheet on the S. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which reaches an elevation of 2,156 m and rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface. Source: Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/ Ongoing Activity ANATAHAN Mariana Islands (Central Pacific) 16.35°N, 145.67°E; summit elev. 790 m The USGS reported that emissions of sulfur dioxide from Anatahan were detected by the satellite-based Ozone Monitoring Instrument (OMI) during 20-25 February. Seismicity was elevated during 20-26 February, though levels varied greatly during 23-25 February. The Washington VAAC reported that plumes possibly containing some ash were visible on satellite imagery drifting WSW, SW, E, W, and SE during 20 and 23-24 February. A Volcanic Haze Advisory was issued by the Emergency Management Office (EMO) on 25 February for Tinian, Saipan, and Rota because of elevated sulfur dioxide levels. This advisory was cancelled on 26 February. The Volcanic Alert Level remained at Watch and the Aviation Color Code remained at Orange. Geologic Summary. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of large stratovolcano with a 2.3 x 5 km, E-W-trending compound summit caldera. The larger western caldera is 2.3 x 3 km wide, and its western rim forms the island's 790-m high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. Sparseness of vegetation on the most recent lava flows on Anatahan had indicated that they were of Holocene age, but the first historical eruption of Anatahan did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera. Sources: Emergency Management Office of the Commonwealth of the Mariana Islands and the US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/cnmistatus.php Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html Saipan Tribune http://www.saipantribune.com/newsstory.aspx?newsID=77395&cat=1 CLEVELAND Chuginadak Island 52.825°N, 169.944°W; summit elev. 1730 m AVO reported that a low-level ash plume from Cleveland was visible on satellite imagery and drifted about 300 km SE on 22 February. The Volcanic Alert Level remained at Advisory and the Aviation Color Code remained at Yellow. Geologic Summary. Symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited dumbbell-shaped Chuginadak Island in the east-central Aleutians. The 1,730-m-high stratovolcano is the highest of the Islands of Four Mountains group and is one of the most active in the Aleutians. Numerous large lava flows descend its flanks. It is possible that some 18th to 19th century eruptions attributed to Carlisle (a volcano located across the Carlisle Pass Strait to the NW) should be ascribed to Cleveland. In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions from Mt. Cleveland have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks. Source: Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/ KERINCI Sumatra (Indonesia) 1.697°S, 101.264°E; summit elev. 3800 m CVGHM reported that white plumes from Kerinci rose to altitudes of 4.1-4.3 km (13,500-14,100 ft) a.s.l. during 14-18 February. The Alert Status remained at 2 (on a scale of 1-4). Residents and visitors were advised not to enter an area within 1 km of the summit. Geologic Summary. The summit of 3800-m-high Kerinci, Indonesia's highest volcano, contains a deep 600-m-wide crater often partially filled by a small crater lake. The massive 13 x 25 km wide volcano towers 2,400-3,300 m above surrounding plains. Kerinci is elongated in a N-S direction and is capped by an unvegetated young summit cone constructed NE of an older crater remnant. One of Sumatra's most active volcanoes, Gunung Kerinci has produced a series of moderate explosive eruptions during the 19th and 20th centuries. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/ KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m Based on observations during overflights, and web camera views when weather permitted, HVO reported that during 20-26 February activity from Kilauea's fissure segment D was concentrated at the Thanksgiving Eve Breakout (TEB) shield and satellitic shields to the E and SE. A lava flow from the shields traveled E towards Kalalua. A pahoehoe lava flow from the SE rootless shield was observed 250 m S of the northern boundary of the Royal Gardens subdivision during an overflight on 20 February. During 25-26 February, lava flows advanced through the subdivision. Diffuse incandescence was observed in Pu'u 'O'o crater through the fume during 20-22 February. Earthquakes were located E of and beneath Halema'uma'u crater, along the S-flank faults, beneath the summit, N of the summit, and along the SW rift zones. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ LLAIMA Central Chile 38.692°S, 71.729°W; summit elev. 3125 m SERNAGEOMIN reported that weak steam plumes were observed from Llaima's main crater on 20 February. The 'a'a lava flow that traveled 2.5 km during 2-13 February varied in width between 30-40 m and was 10 m thick. On 21 February small ash plumes rose from the E and SE flanks. Pyroclastic flows descended the E flank and possibly down the W flank. Sulfur dioxide plumes that rose from two craters within the main crater were visible during an overflight. On 22 February, a seismic signal pattern similar to that observed during a previous pyroclastic flow was noted. Ash-and-gas plumes rose from the E flank. On 23 February, an ash-and-gas plume rose from the SE flank. Geologic Summary. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other to the SE. The massive 3,125-m-high, glacier-covered stratovolcano has a volume of 400 cu km. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following eruption of the 24 cu km Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7,200 years ago, construction of the present edifice began, characterized by Strombolian, hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century. Source: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/index.php OL DOINYO LENGAI Tanzania 2.764°S, 35.914°E; summit elev. 2962 m The Toulouse VAAC reported that a plume from Ol Doinyo Lengai was observed by pilots on 21 February and rose to an altitude of 18.3 km (60,000 ft) a.s.l. Based on a Significant Meteorological Information (SIGMET) report, an ash plume rose to an altitude of 14 km (46,000 ft) a.s.l. on 24 February. Geologic Summary. The symmetrical Ol Doinyo Lengai stratovolcano is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent volcano, known as "The Mountain of God," rises abruptly above the broad plain S of Lake Natron. The cone-building stage of the volcano ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatite and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra eruptions and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater. Petrologists first observed the eruption of carbonatitic lava flows in the 1960s. Subsequent more frequent visits have documented long-term lava effusion in the summit crater that would not have been seen from the foot of the volcano. Source: Toulouse Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/FR/messages.html POPOCATEPETL México 19.023°N, 98.622°W; summit elev. 5426 m CENAPRED reported that emissions of steam and gas from Popocatépetl were visible during 20-26 February. The plumes occasionally contained slight amounts of ash. Explosions on 21 and 22 February resulted in ash plumes that rose to an altitude of 7.4 km (24,300 ft) a.s.l. and drifted NE. Incandescent fragments were ejected from the crater and fell on the flanks. On 22 February, the ejected fragments fell on the SE flank. Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. Sources: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.unam.mx/es/ Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html RABAUL New Britain (SW Pacific) 4.271°S, 152.203°E; summit elev. 688 m RVO reported that ash plumes from Rabaul caldera's Tavurvur cone rose to altitudes of 1.7-2.7 km (5,600-8,900 ft) a.s.l. and drifted E, SE, S, and SW during 20-27 February. Roaring noises were occasionally heard. Ashfall was reported in areas mainly downwind, including Kokopo Town (SE), Takubar (SW), and Tokua (SE), during 21-25 February. Incandescence at the summit was noted during 22-24 February. On 25 February an explosion showered the flanks with lava fragments. On 26 February a large explosion was accompanied by a thick billowing ash plume that rose to an altitude of 3.7 km (12,100 ft) a.s.l. and drifted SE and E. The flanks were again showered with lava fragments. Ashfall was reported in Kokopo and surrounding areas. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Herman Patia and Steve Saunders, Rabaul Volcano Observatory (RVO) SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was slightly above background levels during 15-22 February. Based on seismic interpretation, ash plumes possibly rose to an altitude of 3 km (10,000 ft) a.s.l. on 17 and 20 February. During the reporting period strong fumarolic activity was seen daily on video footage and a thermal anomaly was present in the crater on satellite imagery. The Level of Concern Color Code remained at Orange. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that that during 20-26 February the lava dome at Soufrière Hills changed very little, based on limited visual observations during an over flight on 21 February and from ground locations. The E talus flank continued to erode and both fresh and older material accumulated in the Tar River Valley to the E. Active fumaroles around the lava dome were observed during the overflight. Seismic activity was very low and low-level rockfall activity continued. The Alert Level remained elevated at 4 (on a scale of 0-5). Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms/ ST. HELENS Washington (USA) 46.20°N, 122.18°W; summit elev. 2549 m On 21 February, CVO lowered the Alert Level for Mount St. Helens from Watch to Advisory and the Aviation Color Code from Orange to Yellow. Comparison of photographs taken by remote cameras during late January to mid-February 2008 showed no evidence of extrusion. In addition, very few earthquakes were recorded since late January, gas emissions were barely detectable, and daily ground-tilt events stopped. Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers. Source: Cascades Volcano Observatory (CVO) http://vulcan.wr.usgs.gov/ TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m IG reported that although visual observations were very limited due to storm cloud cover, gas-and-steam and ash-and-steam plumes from Tungurahua were spotted and rose to altitudes of 5.5-7 km (18,000-23,000 ft) a.s.l. during 20-26 February. Ash plumes drifted mainly W and SW and ashfall was reported in areas downwind on 19, 23, and 26 February. Lahars or mudflows affected roads in the Pampas sector to the S on 19, 20, and 25 February. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ UBINAS Perú 16.355°S, 70.903°W; summit elev. 5672 m Based on pilot reports, the Buenos Aires VAAC reported that ash plumes from Ubinas rose to altitudes of 5.5-8.5 km (18,000-28,000 ft) a.s.l. and drifted SE on 23 February. Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread Plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions. Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================