*********************************************************** GVP/USGS Weekly Volcanic Activity Report 16-22 January 2008 Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ *********************************************************** New Activity/Unrest: | Galeras, Colombia | Llaima, Central Chile | Nevado del Huila, Colombia Ongoing Activity: | Anatahan, Mariana Islands (Central Pacific) | Kilauea, Hawaii (Hawaiian Islands) | Krakatau, Indonesia | Ol Doinyo Lengai, Tanzania | Poás, Costa Rica | Rabaul, New Britain (SW Pacific) | Shiveluch, Sredinny Range | Soufrière Hills, Montserrat | St. Helens, Washington (USA) | Tungurahua, Ecuador New Activity/Unrest GALERAS Colombia 1.22°N, 77.37°W; summit elev. 4276 m INGEOMINAS issued a report at 1000 on 17 January, noting that the seismic pattern from Galeras observed during the previous 24 hours was similar to patterns noted before past eruptions. Later that day, at 2006, an explosive eruption was registered by the seismic network and prompted INGEOMINAS to raise the Alert Level from 3 ("changes in the behavior of volcanic activity have been noted") to 1 ("imminent eruption or in course"), on a scale of 4-1. Based on observations of satellite imagery and information from INGEOMINAS, the Washington VAAC reported that an ash plume rose to an altitude of 11 km (36,000 ft) a.s.l. at 2216 and drifted W on 17 January. On 19 January, INGEOMINAS lowered the Alert Level to 2 ("likely eruption in days or weeks") because seismic events decreased in occurrence and energy. On 21 January, INGEOMINAS further lowered the Alert Level to 3 and reported that the initial ash plume from the eruption drifted SW, then W. Fine Ashfall was collected in Túquerres (about 32 km to the SW) and very fine ash was observed in neighborhoods of Ricaurte (about 71 km to the W). About 2 km away, military personnel reported that blocks 1.5 m in diameter were noted on a highway. According to a news article, small settlements to the N were ordered to evacuate; about 100 people moved to shelters. Geologic Summary. Galeras, a stratovolcano with a large breached caldera located immediately W of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic Galeras volcanic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Longterm extensive hydrothermal alteration has affected the volcano. This has contributed to large-scale edifice collapse that has occurred on at least three occasions, producing debris avalanches that swept to the W and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors. Sources: Instituto Colombiano de Geología y Minería http://www.ingeominas.gov.co/ Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html Associated Press http://www.univision.com/contentroot/wirefeeds/50noticias/7382530.html# LLAIMA Central Chile 38.692°S, 71.729°W; summit elev. 3125 m SERNAGEOMIN reported that eruptive activity at Llaima continued from the main crater and from two craters and a fissure on the E flank during 16-21 January. Based on observations during an overflight on 16 January, three nested pyroclastic cones within the main crater were active. The larger cone produced weak ash emissions that rose about 500 m. Ash emissions were also noted from a crater on the E flank. Glaciers on the NE slope and W flank were fractured and dislocated. Ash emissions from a NE-SW-trending fissure about 80 m in length and 10 m wide were observed. Also noted were incandescent rocks that rolled from the NE end of the fissure and ash plumes generated from rolling rocks in multiple areas during 16-17 January. On 17 January, ash emissions rose from the main crater to an altitude of 3.5 km (11,500 ft) a.s.l and drifted E. Weak Strombolian activity was seen from the main crater during aerial observation. At 0732 on 18 January, a lateral explosion from the E side produced an ash plume that rose to an altitude of 9.1 km (29,900 ft) a.s.l. and quickly dispersed NE. Later that day, a small lateral explosion from the same area and ash-and-gas emissions from several points and new fissures were noted. On 19 January, an explosion from the E flank produced an ash plume that rose to an altitude of 4.1 km (13,500 ft) a.s.l. An overflight revealed Strombolian activity in the main crater from a pyroclastic cone that was 120 m in diameter and 100 m high. The cone was not present during the overflight on 17 January. A second crater to the SW emitted gas. Sporadic ash emissions were noted from the E sector and an explosion produced a pyroclastic flow and an ash plume that quickly dissipated. On 20 January, another explosion produced an ash plume that rose to an altitude of 4.1 km (13,500 ft) a.s.l. Gas and ash emissions were again noted from multiple areas. On 21 January, cloud cover inhibited visual observations; one small ash emission was noted at the end of the day. Geologic Summary. Llaima, one of Chile's largest and most active volcanoes, contains two historically active craters, one at the summit and the other to the SE. The massive 3,125-m-high, glacier-covered stratovolcano has a volume of 400 cu km. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following eruption of the 24 cu km Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7,200 years ago, construction of the present edifice began, characterized by Strombolian, hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century. Source: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/ NEVADO DEL HUILA Colombia 2.93°N, 76.03°W; summit elev. 5365 m Based on aerial observations from a commercial flight on 19 January, INGEOMINAS reported that ash deposits from Nevado del Huila were seen on the W sector of a summit glacier, confirming the seismic interpretation from the previous month. Geologic Summary. Nevado del Huila, the highest active volcano in Colombia, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. Two glacier-free lava domes lie at the southern end of the Huila volcanic complex. The first historical eruption from this little known volcano took place in the 16th century. Two persistent steam columns rise from the central peak, and hot springs are also present. Source: Instituto Colombiano de Geología y Minería (INGEOMINAS) http://www.ingeominas.gov.co// Ongoing Activity ANATAHAN Mariana Islands (Central Pacific) 16.35°N, 145.67°E; summit elev. 790 m The USGS reported that on several days during 12-20 January, sulfur dioxide plumes from Anatahan were detected by the satellite-based Ozone Monitoring Instrument (OMI). Seismic tremor increased on 16 January and remained elevated on 20 January. The Volcanic Alert Level remained at Advisory and the Aviation Color Code remained at Yellow. Geologic Summary. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of large stratovolcano with a 2.3 x 5 km, E-W-trending compound summit caldera. The larger western caldera is 2.3 x 3 km wide, and its western rim forms the island's 790-m high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. Sparseness of vegetation on the most recent lava flows on Anatahan had indicated that they were of Holocene age, but the first historical eruption of Anatahan did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera. Source: Emergency Management Office of the Commonwealth of the Mariana Islands and the US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/cnmistatus.php KILAUEA Hawaii (Hawaiian Islands) 19.421°N, 155.287°W; summit elev. 1222 m Based on overflights and web camera views when weather permitted, HVO reported that during 16-22 January activity from Kilauea's fissure segment D was concentrated at the Thanksgiving Eve Breakout (TEB) shield and satellitic shields to the SE. Lava flows from the tops and flanks of the shields traveled S and E. During 16-19 January, incandescence was observed in Pu'u 'O'o crater for less than 10 minutes at a time. During 18-19 January, the summit tiltmeter network recorded the first DI (deflation-inflation) tilt event since October 2007. A few small earthquakes were located beneath the summit, Halema'uma'u crater, and Pulama pali, and along the upper and lower E rift zones and S-flank fault. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/hvostatus.php KRAKATAU Indonesia 6.102°S, 105.423°E; summit elev. 813 m According to a news article, incandescent rocks erupted and plumes from Anak Krakatau rose to altitudes of 2.8-3.3 km (9,200-10,800 ft) a.s.l. on 20 January. Eruptions reportedly had a "deafening sound" and could be seen from Sertung and Rakata islands. Geologic Summary. Renowned Krakatau volcano lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 AD, resulted in a 7-km-wide caldera. Remnants of this volcano formed Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. The post-collapse cone of Anak Krakatau (Child of Krakatau), constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan, has been the site of frequent eruptions since 1927. Source: Antara News http://www.antara.co.id/en/arc/2008/1/21/red-hot-rocks-hurled-from-anak-krakatau-reach-25-km-high/ OL DOINYO LENGAI Tanzania 2.764°S, 35.914°E; summit elev. 2962 m A visitor to Ol Doinyo Lengai reported that it erupted on 14 January. A "shower of stones" fell at their location about 50 m from the summit and a lava flow went another direction. Geologic Summary. The symmetrical Ol Doinyo Lengai stratovolcano is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent volcano, known as "The Mountain of God," rises abruptly above the broad plain S of Lake Natron. The cone-building stage of the volcano ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatite and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra eruptions and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater. Petrologists first observed the eruption of carbonatitic lava flows in the 1960s. Subsequent more frequent visits have documented long-term lava effusion in the summit crater that would not have been seen from the foot of the volcano. Source: Frederick Belton's Ol Doinyo Lengai website http://www.mtsu.edu/~fbelton/lengai.html POAS Costa Rica 10.20°N, 84.233°W; summit elev. 2708 m According to a news article, an eruption of volcanic material and gases from Poás rose to an altitude of 2.9 km (9,500 ft) a.s.l. on 13 January. The article also stated that a report from OVSICORI-UNA on 22 January revealed that an eruption of gas propelled material that did not fall beyond the cone. Authorities evacuated 20 people in the vicinity of the eruption. Geologic Summary. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2,708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Poás eruptions often include geyser-like ejection of crater-lake water. Source: Nacion.com http://www.nacion.com/ln_ee/2008/enero/22/sucesos1394799.html RABAUL New Britain (SW Pacific) 4.271°S, 152.203°E; summit elev. 688 m RVO reported that ash plumes from Rabaul caldera's Tavurvur cone rose to altitudes of 0.8-1 km (2,600-3,300 ft) a.s.l. and drifted E and SE during 17-20 and 22-23 January. On 17 January ashfall was reported in Tokua, about 20 km SE, prompting Air Niugini to cancel some flights. During 18-20 January, the ash plumes were released at 10-20 minute intervals. White plumes were emitted on 21 and 22 January. Incandescence from the center of the crater was visible at night during 17-22 January. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Steve Saunders and Herman Patia, Rabaul Volcano Observatory SHIVELUCH Sredinny Range 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was above background levels during 11-18 January. Based on seismic interpretation, ash plumes rose to an altitude of 4.1 km (13,500 ft) a.s.l. on 12 and 16 January. Ash plumes at an altitude of 4.5 km (14,800 ft) a.s.l. were visible on the Shiveluch web camera on 16 January. Strong fumarolic activity was noted during 15-17 January. Based on observations of satellite imagery, a thermal anomaly was present in the crater every day. The Level of Concern Color Code remained at Orange. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/updates.shtml SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that during 15-22 January the lava dome at Soufrière Hills changed very little, based on visual observations. Seismic activity was very low and low-level rockfall activity continued. Fumarolic activity on the N and E flanks continued. Active fumaroles were also noted in the Galway's area to the S of the dome and W in the Gages Wall area. The Alert Level remained elevated at 4 (on a scale of 0-5). Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory http://www.mvo.ms/ ST. HELENS Washington (USA) 46.20°N, 122.18°W; summit elev. 2549 m Data from deformation-monitoring instruments indicated that during 16-22 January lava-dome growth at Mount St. Helens continued. Seismicity persisted at low levels, punctuated by M 1.5-2.5 and occasionally larger earthquakes. Clouds occasionally inhibited visual observations. Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers. Source: Cascades Volcano Observatory http://volcano.wr.usgs.gov/cvo/current_updates.php TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m IG reported that although visual observations were occasionally limited due to cloud cover, ash plumes were spotted and rose to altitudes of 5.5-9 km (18,000-29,500 ft) a.s.l. during 16-22 January. Ashfall was reported daily in areas mainly to the W, SW, and NW, and was heavy on 20 January. Roaring noises and "cannon shots" were heard frequently and windows and floors vibrated on 15, 20, and 21 January, as far away as the Tungurahua Observatory (OVT) in Guadalupe, about 13 km NW. On 16 January, incandescent blocks were propelled 200 m above the crater during a Strombolian eruption phase and blocks rolled 1 km down the flank. Three explosions produced blocks that rolled 2 km down the flanks. A small pyroclastic flow traveled 400 m down the NW side of the crater. Incandescence at the crater was again noted on 17 and 21 January. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional http://www.igepn.edu.ec/ +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================