GVP/USGS Weekly Volcanic Activity Report 7-13 February 2007

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



***********************************************************

GVP/USGS Weekly Volcanic Activity Report

7-13 February 2007

http://www.volcano.si.edu/reports/usgs/

***********************************************************

New Activity/Unrest: | Concepción, Nicaragua

Ongoing Activity: | Barren Island, India | Karymsky, Russia | Kilauea, USA | Sakura-jima, Japan | Sangay, Ecuador | Santa María, Guatemala | Semeru, Indonesia | Shiveluch, Russia | Soufrière Hills, Montserrat | St. Helens, USA | Suwanose-jima, Japan | Tungurahua, Ecuador

New Activity/Unrest

CONCEPCIÓN Nicaragua 11.538°N, 85.622°W; summit elev. 1,700 m

INETER reported that explosions in the crater of Concepción produced ash-and-gas plumes that traveled down the WSW flanks on 9 February. Explosions continued on 10 February and produced minor ash-and-gas plumes. No seismicity was registered.

Geologic Summary. Volcán Concepción is one of Nicaragua's highest volcanoes and is also one of its most active. The symmetrical volcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua. Concepción is connected to neighboring Madera volcano by a narrow isthmus. N-S-trending fractures cutting across the volcano are associated with spatter cones, cinder cones, and maars located on the middle N flank and on the lower S flank down to Lake Nicaragua. Concepción has had frequent moderate explosive eruptions in the past century, most of which have originated from a small summit crater.

Source: Instituto Nicaragüense de Estudios Territoriales (INETER) http://www.ineter.gob.ni/

Concepción Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1404-12=

Ongoing Activity

BARREN ISLAND Andaman Islands, Indian Ocean, India 12.29°N, 93.88°E; summit elev. 354 m

Based on satellite imagery, the Darwin VAAC reported that an ash plume from Barren Island reached an altitude of 3 km (10,000 ft) a.s.l. and drifted SW on 8 February.

Geologic Summary. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The 354-m-high island is the emergent summit of a volcano that rises from a depth of about 2,250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the W, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. The morphology of a fresh pyroclastic cone that was constructed in the center of the caldera has varied during the course of historical eruptions. Lava flows fill much of the caldera floor and have reached the sea along the western coast during eruptions in the 19th century and more recently in 1991 and 1995.

Source: Darwin Volcanic Ash Advisory Centre http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html

Barren Island Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0600-01=

KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m

Seismic activity at Karymsky was above background levels during 2-9 February, with 80-400 shallow earthquakes occurring daily. Ash plumes may have reached altitudes of 4 km (13,000 ft) a.s.l. during the reporting period. The Level of Concern Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

Source: Kamchatkan Volcanic Eruption Response Team http://www.kscnet.ru/ivs/kvert/updates.shtml

Karymsky Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13=

KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m

During 7-13 February, lava from Kilauea continued to flow from lava deltas into the ocean at the East Lae'apuki, Kamokuna, and East Ka'ili'ili entries. Incandescence was seen from the Campout and PKK flows on the pali and from several vents in Pu'u 'O'o's crater. Tremor near Pu'u 'O'o continued at low levels.

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world’s most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed by lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. The latest Kilauea eruption began in January 1983 along the E rift zone. This long-term ongoing eruption from Pu`u `O`o-Kupaianaha has produced lava flows that have traveled 11-12 km from the vents to the sea, paving broad areas on the S flank of Kilauea and adding new land beyond the former coastline.

Source: US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/hvostatus.php

Kilauea information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01-

SAKURA-JIMA Kyushu, Japan 31.58°N, 130.67°E; summit elev. 1,117 m

Based on information from Japan Meteorological Agency (JMA), the Tokyo VAAC reported an explosion from Sakura-jima on 10 February. The altitude and direction of a resultant plume were not reported. On 13 February, an explosion produced a plume that rose to an altitude of 2.1 km (7,000 ft) a.s.l.

Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Source: Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Sakura-jima Information from the Global Volcanism Program http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=0802-08=

SANGAY Ecuador 2.03°S, 78.34°W; summit elev. 5,188 m

Based on information from Guayaquil MWO, IG, pilot reports, and satellite imagery, the Washington VAAC reported that eruptions from Sangay during 6-10 and 13 February produced ash plumes that drifted SW, NW, N, and W. Plumes reached altitudes of 9 km (30,000 ft) a.s.l. on 6 February and 6.1 km (20,000 ft) a.s.l. on 9 February. A hotspot was seen on satellite imagery at the summit during 7-9 and 13 February.

Geologic Summary. The isolated Sangay volcano, located E of the Andean crest, is the southernmost of Ecuador's volcanoes, and its most active. It has been in frequent eruption for the past several centuries. The steep-sided, 5,230-m-high glacier-covered volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the E, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. Sangay towers above the tropical jungle on the E side; on the other sides flat plains of ash from the volcano have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of an historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The more or less constant eruptive activity has caused frequent changes to the morphology of the summit crater complex.

Source: Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html

Sangay Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-09=

SANTA MARÍA Guatemala 14.756°N, 91.552°W; summit elev. 3,772 m

Based on satellite imagery, the Washington VAAC reported that diffuse plumes from Santa María's Santiaguito lava dome complex drifted SW and S in a fan shape on 8 February. A hot spot was detected on satellite imagery.

Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Source: Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html

Santa María Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03=

SEMERU Java, Indonesia 8.11°S, 112.92°E; summit elev. 3,676 m

Based on a news report, eruption plumes from Semeru drifted E on 10 and 11 February. Ashfall was reported from areas including the town of Lumajang, about 35 km E.

Geologic Summary. Semeru is the highest volcano on Java and one of its most active. The symmetrical stratovolcano rises abruptly to 3,676 m above coastal plains to the S and lies at the southern end of a volcanic massif extending N to the Tengger caldera. Semeru has been in almost continuous eruption since 1967. Frequent small-to-moderate Vulcanian eruptions have accompanied intermittent lava dome extrusion, and periodic pyroclastic flows and lahars have damaged villages below the volcano. A major secondary lahar on 14 May 1981 caused more than 250 deaths and damaged 16 villages.

Source: Agence France-Presse http://www.nationmultimedia.com/worldhotnews/read.php?newsid=30026618

Semeru Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0603-30=

SHIVELUCH Kamchatka Peninsula, Russia 56.653°N, 161.360°E; summit elev. 3,283 m

Activity at Shiveluch continued above background levels during 2-9 February, with over 200 shallow earthquakes occurring daily. Based on seismic interpretation, observation, and video data, gas-and-ash plumes rose 4.0-5.5 km (13,100-18,000 ft) a.s.l. throughout the reporting period. Plumes drifted NE and NW. A large thermal anomaly was visible on satellite imagery. The Tokyo VAAC reported ash plumes to an altitude of 5.2-5.5 km (17,000-18,000 ft) a.s.l. on 10 and 13 February that were visible on satellite imagery. The Level of Concern Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.

Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large horseshoe-shaped caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.

Sources: Kamchatkan Volcanic Eruption Response Team http://www.kscnet.ru/ivs/kvert/updates.shtml,

Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Shiveluch Information from the Global Volcanism Program

http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=1000-27=

SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev. 1,052 m

During 7-13 February, growth of the Soufrière Hills lava dome continued on the W side. A small lobe was observed on 7 February growing to the SW. On 8 February, three pyroclastic flows traveled a maximum distance of a few kilometers E down the Tar River Valley. At least one of the pyroclastic flows was the result of a small collapse from the S or SW part of the dome. Small pyroclastic flows traveled NW down Tyres Ghaut on 9 February and down the northern flanks onto Farrell's Plain on 12 and 13 February. Based on satellite imagery, information from MVO, and pilot reports, the Washington VAAC reported that ash-and-gas and steam plumes drifted predominantly NW during 10-13 February. Plumes reached a maximum altitude of 2.7 km (9,000 ft) a.s.l. on 13 February.

Based on a news article on 13 February, the lava-dome volume was approximately 250 million cubic meters, surpassing the previous record size of 240 million cubic meters in 2003.

Geologic Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the east, was formed during an eruption about 4000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Sources: Montserrat Volcano Observatory http://www.mvo.ms/,

Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html,

Caribbean Net News http://www.caribbeannetnews.com/cgi-script/csArticles/articles/000059/005927.htm

Soufrière Hills Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05=

ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m

Seismicity from the growing lava dome at Mount St. Helens was low during 7-13 February. Crater views were obscured by clouds.

Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers.

Source: US Geological Survey Cascades Volcano Observatory http://vulcan.wr.usgs.gov/Volcanoes/MSH/CurrentActivity/framework.html

St. Helens Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05-

SUWANOSE-JIMA Ryukyu Islands, Japan 29.53°N, 129.72°E; summit elev. 799 m

Based on information from JMA and satellite imagery, the Tokyo VAAC reported that an explosion from Suwanose-jima produced an eruption plume during 7 February. The altitude and direction of the plume were not reported.

Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. Suwanose-jima, one of Japan’s most frequently active volcanoes, was in a state of intermittent strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for around 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884.

Source: Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Suwanose-jima Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0802-03=

TUNGURAHUA Ecuador 1.47°S, 78.44°W; summit elev. 5,023 m

During 7-13 February, visual observations of Tungurahua were limited due to inclement weather. During 12-13 February, seismicity increased and fumarolic activity was observed from the N and NE flanks. ON 13 February, a plume with moderate ash content rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted NW.

Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador’s capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have been restricted to the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano.

Source: Instituto Geofísico-Escuela Poltécnica Nacional http://www.igepn.edu.ec/

Tungurahua Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-08=

**+++++++++++++++++++++++++++++++++++++**

**Sally Kuhn Sennert**

**SI/USGS Weekly Volcanic Activity Report Editor**

**Global Volcanism Program**

Smithsonian Institution

National Museum of Natural History MRC-119

Department of Mineral Sciences

Washington, D.C., 20560

http://www.volcano.si.edu/reports/usgs/index.cfm

Phone: 202.633.1805
Fax: 202.357.2476
<http://www.volcano.si.edu/reports/usgs/>++++++++++++++++++++++++++++++++++++++++++

==============================================================
To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx

To contribute to the volcano list, send your message to:
volcano@xxxxxxxx  Please do not send attachments.
==============================================================

[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux