GVP/USGS Weekly Volcanic Activity Report 25-31 October 2006

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



**************************************
GVP/USGS Weekly Volcanic Activity Report

25-31 October 2006

http://www.volcano.si.edu/reports/usgs/

**************************************

New Activity/Unrest: | Cleveland, Alaska | Mayon, Philippines


Ongoing Activity: | Bulusan, Philippines | Colima, México | Karymsky, Russia | Kilauea, USA | Langila, Papua New Guinea | Rabaul, Papua New Guinea | Sakura-jima, Japan | Santa María, Guatemala | Semeru, Indonesia | Soufrière Hills, Montserrat | St. Helens, USA | Sulu Range, Papua New Guinea | Suwanose-jima, Japan | Tungurahua, Ecuador | Ubinas, Perú

New Activity/Unrest

CLEVELAND Aleutian Islands, USA 52.82°N, 169.95°W; summit elev. 1,730 m

AVO raised the Alert Level for Cleveland from Advisory to Watch on 28 October based on pilot reports of an ash plume. Satellite imagery confirmed the presence of a plume drifting ENE at an altitude estimated at 6.1 km (20,000 ft) a.s.l. A pilot reported that the altitude of the plume was in excess of 9.1 km (30,000 ft) a.s.l. On 30 October, the Alert Level was lowered back to Advisory because of no further evidence of activity.

Geologic Summary. The symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited dumbbell-shaped Chuginadak Island in the east-central Aleutians. The 1,730-m-high stratovolcano is the highest of the Islands of Four Mountains group and is one of the most active in the Aleutians. Numerous large lava flows descend its flanks. It is possible that some 18th to 19th century eruptions attributed to Carlisle (a volcano located across the Carlisle Pass Strait to the NW) should be ascribed to Cleveland. In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions from Mt. Cleveland have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Source: Alaska Volcano Observatory http://www.avo.alaska.edu/

Cleveland Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1101-24-

MAYON southeastern Luzon, Philippines 13.257°N, 123.685°E; summit elev. 2,462 m

PHIVOLCS announced the lowering of the Alert status for Mayon from Alert Level 2 to Alert Level 1 on 25 October. The 7-km Extended Danger Zone (EDZ) on the SE flank remained in effect.

Geologic Summary. The beautifully symmetrical Mayon volcano, which rises to 2,462 m above the Albay Gulf, is the Philippines' most active volcano. The structurally simple volcano has steep upper slopes that average 35-40° and is capped by a small summit crater. The historical eruptions of this basaltic-andesitic volcano date back to 1616 and range from Strombolian to basaltic Plinian. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. Mayon’s most violent eruption, in 1814, killed more than 1,200 people and devastated several towns. Eruptions that began in February 2000 led PHIVOLCS to recommend on 23 February the evacuation of people within a radius of 7 km from the summit in the SE and within a 6 km radius for the rest of the volcano.

Source: Philippine Institute of Volcanology and Seismology http://www.phivolcs.dost.gov.ph/

Mayon Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0703-03=

Ongoing Activity

BULUSAN Luzon, Philippines 12.770°N, 124.05°E; summit elev. 1,565 m

PHIVOLCS reported that during 25-26 October, a lahar from Bulusan deposited sediments 15 cm (6 in) thick along a tributary leading to the Gulang-gulang River. According to news articles, the lahar mobilized boulders as large as trucks and caused at least 96 people to evacuate. During 30-31 October, ash explosions generated a light gray ash-and-steam plume that rose to 2.3 km (7,400 ft) a.s.l. and drifted NNE. Later field inspection revealed ashfall (trace to 1 mm) in the N sectors of the volcano, including areas in the municipalities of Casiguran and Gubat.

Geologic Summary. Luzon's southernmost volcano, Bulusan, was constructed within the 11-km-diameter dacitic Irosin caldera, which was formed more than 36,000 years ago. A broad, flat moat is located below the prominent SW caldera rim; the NE rim is buried by the andesitic Bulusan complex. Bulusan is flanked by several other large intracaldera lava domes and cones, including the prominent Mount Jormajan lava dome on the SW flank and Sharp Peak to the NE. The summit of Bulusan volcano is unvegetated and contains a 300-m wide, 50-m-deep crater. Three small craters are located on the SE flank. Many moderate explosive eruptions have been recorded at Bulusan since the mid-19th century.

Sources: Philippine Institute of Volcanology and Seismology http://www.phivolcs.dost.gov.ph/, Inquirer http://newsinfo.inq7.net/inquirerheadlines/regions/view_article.php?article_id=29009

Bulusan Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0703-01=

COLIMA Western México 19.514°N, 103.62°W; summit elev. ~3,850 m

Based on reports from the Mexico City MWO and satellite imagery, the Washington VAAC reported that an eruption plume from Colima on 29 October reached an altitude of 6.1 km (20,000 ft) a.s.l. and drifted S.

Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Source: Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html

Colima Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1401-04=

KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m

Seismic activity increased at Karymsky during 21-27 October, with 350-550 shallow earthquakes occurring daily. Explosions produced ash plumes that may have reached altitudes of 2.5-5.0 km (8,200-16,400 ft) a.s.l. and drifted E, NE, and SE. Staff from the Institute of Volcanology and Seismology (IVS) observed a series of ash bursts that produced plumes to 2.0 km (6,600 ft) a.s.l. on 25 October. A thermal anomaly in the crater was detected on satellite imagery during 19-24 October.

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

Source: Kamchatkan Volcanic Eruption Response Team http://www.kscnet.ru/ivs/kvert/updates.shtml

Karymsky Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13=

KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m

The summit of Kilauea continued to slowly inflate S of Halema'uma'u caldera during 25-31 October. Incandescence was intermittently but strongly visible from the East Pond and January vents, and occasionally dimly visible from South Wall complex and Drainhole vent in Pu'u 'O'o's crater. Lava from the Campout and PKK systems continued to flow off of a lava delta into the ocean at the East Lae'apuki and East Ka'ili'ili entries. On 25 October, two separate break-out lava flows were visible on Pulama pali. The upper flow at about 320 m (1,050 ft) elevation consisted of ‘a’a and pahoehoe and the lower flow at 114 m (375 ft) was solely pahoehoe.

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world’s most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed by lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. The latest Kilauea eruption began in January 1983 along the E rift zone. This long-term ongoing eruption from Pu`u `O`o-Kupaianaha has produced lava flows that have traveled 11-12 km from the vents to the sea, paving broad areas on the S flank of Kilauea and adding new land beyond the former coastline.


Source: US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/hvostatus.php

Kilauea information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01-


LANGILA New Britain Island, Papua New Guinea 5.53°S, 148.42°E; summit elev. 1,330 m

During 23-31 October, eruptive activity at Langila’s Crater 2 consisted of continuous emissions of gray-to-brown ash plumes accompanied by sub-forceful gray ash plumes. Pilots reported plumes to an altitude of 2.4 km (8,000 ft) a.s.l. that drifted NE. Explosions of incandescent lava fragments were visible during 23-30 October. Based on satellite imagery, the Darwin VAAC reported that on 31 October a small ash plume rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted NNE.

Geologic Summary. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Sources: Herman Patia, Rabaul Volcano Observatory,

Darwin Volcanic Ash Advisory Centre http://www.bom.gov.au/info/vaac/advisories.shtml

Langila Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0502-01=

RABAUL New Britain Island, Papua New Guinea 4.271°S, 152.203°E; summit elev. 688 m

Based on satellite imagery, the Darwin VAAC reported that a small ash-and-steam plume from Rabaul reached an altitude of 3.0 km (10,000 ft) a.s.l. and drifted NW on 26, 27, and 28 October. The RVO reported that mild eruptions during 29-30 October produced thick, gray ash plumes that drifted N and NW. Fine ashfall was reported from Namanula, including surrounding areas downwind, and E Rabaul town. Seismicity was at background levels and the rate of ground deformation was low.

Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Sources: Herman Patia, Rabaul Volcano Observatory,

Darwin Volcanic Ash Advisory Centre http://www.bom.gov.au/info/vaac/advisories.shtml

Rabaul Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0502-14=


SAKURA-JIMA Kyushu, Japan 31.58°N, 130.67°E; summit elev. 1,117 m

Based on information from JMA, the Tokyo VAAC reported that on 25 and 27 October, ash plumes from Sakura-jima reached altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. Plumes drifted SW and NE, respectively.

Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Source: Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Sakura-jima Information from the Global Volcanism Program http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=0802-08=


SANTA MARÍA Guatemala 14.756°N, 91.552°W; summit elev. 3,772 m

According to the Washington VAAC, minor emissions from Santa María's Santiaguito lava-dome complex on 26, 27, and 30 October were visible on satellite imagery. The small plumes of gas and light ash drifted predominantly W.

Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Source: Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html

Santa María Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03=

SEMERU Java, Indonesia 8.11°S, 112.92°E; summit elev. 3,676 m

Based on a pilot report, the Darwin VAAC reported that on 25 and 26 October, an eruption plume from Semeru reached 7.6 km (25,000 ft) a.s.l. and drifted W. On 30 October, ash-and-steam emissions were detected on satellite imagery.

Geologic Summary. Semeru is the highest volcano on Java and one of its most active. The symmetrical stratovolcano rises abruptly to 3,676 m above coastal plains to the S and lies at the southern end of a volcanic massif extending N to the Tengger caldera. Semeru has been in almost continuous eruption since 1967. Frequent small-to-moderate Vulcanian eruptions have accompanied intermittent lava dome extrusion, and periodic pyroclastic flows and lahars have damaged villages below the volcano. A major secondary lahar on 14 May 1981 caused more than 250 deaths and damaged 16 villages.

Source: Darwin Volcanic Ash Advisory Centre http://www.bom.gov.au/info/vaac/advisories.shtml

Semeru Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0603-30=

SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev. 1,052 m

During 20-27 October, lava-dome growth at Soufrière Hills continued and was concentrated on the NE part of the edifice. Rockfalls and small pyroclastic flows originating from the active lobe traveled down the NE flank. Several small stubby spine-like structures were observed on the SE summit region of the dome.

Based on information from the MVO, satellite imagery, and the Piarco MWO, the Washington VAAC reported that continuous ash and gas emissions during 25-31 October produced plumes that drifted NW and W. Plumes reached altitudes of 2.1 km (7,000 ft) a.s.l. A hotspot was detected on satellite imagery during 25-27 October and 29 October.

Geologic Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the east, was formed during an eruption about 4000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Sources: Montserrat Volcano Observatory http://www.mvo.ms/,

Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html

Soufrière Hills Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05=

ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m

During 25-31 October, the lava dome at Mount St. Helens continued to grow and produce small rockfalls. On 29 October, a M 3.2 earthquake was accompanied by a rockfall that produced a small plume. The plume filled the crater to just above the rim and quickly dissipated.

Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers.

Source: US Geological Survey Cascades Volcano Observatory http://vulcan.wr.usgs.gov/Volcanoes/MSH/CurrentActivity/framework.html

St. Helens Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05-

SULU RANGE New Britain Island, Papua New Guinea 5.50°S, 150.942°E

The RVO reported that during 28 September-24 October, seismic activity in the Sulu Range declined. Vapor plumes that were emitted from the Silanga Hotsprings were visible about 20 km NE from Bialla. A moderately strong sulfur smell from the Silanga and Talopu hot springs continued to be reported.

Geologic Summary. The Sulu Range consists of a group of partially overlapping small stratovolcanoes in west-central New Britain off Bangula Bay. The 610-m Mount Malopu forms the high point of the basaltic-to-rhyolitic complex at its SW end. Lava Point forms a peninsula extending about 1 km into Bangula Bay at the NW side of the Sulu Range. The Walo hydrothermal area, consisting of solfataras and mud pots, lies on the coastal plain west of the SW base of the Sulu Range. Prior to 2006, no historical eruptions had occurred from the Sulu Range, although some of the cones display a relatively undissected morphology.

Source: Herman Patia, Rabaul Volcano Observatory

Sulu Range Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0502-09=


SUWANOSE-JIMA Ryukyu Islands, Japan 29.53°N, 129.72°E; summit elev. 799 m

Based on information from JMA, the Tokyo VAAC reported that on 27 and 28 October, ash plumes from Suwanose-jima reached altitudes of 1.8 km (6,000 ft) a.s.l. Plumes drifted E on 28 October.

Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. Suwanose-jima, one of Japan’s most frequently active volcanoes, was in a state of intermittent strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for around 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884.

Source: Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Suwanose-jima Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0802-03=

TUNGURAHUA Ecuador 1.47°S, 78.44°W; summit elev. 5,023 m

IG reported that during 25-30 October emissions from Tungurahua produced plumes consisting of steam, gas, and moderate ash that reached altitudes of 7-8 km (23,000-26,000 ft) a.s.l. and drifted W, SW, NW, and NE. Ashfall was reported from several towns downwind of the plumes including Penipe (8 km SW), Bilbao (8 km W), Cotaló (13 km NM), and Baños (8 km NNE). On 28 October, incandescent blocks were expelled from the summit and rolled about 500 m down the W and E flanks. The next day, a lahar traveled NNW down the Mandur drainage and muddy water swelled in the Vazcún drainage.

Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador’s capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have been restricted to the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano.

Source: Instituto Geofísico-Escuela Poltécnica Nacional http://www.igepn.edu.ec/vulcanologia/tungurahua/actividad/informet.htm

Tungurahua Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-08=

UBINAS Perú 16.355°S, 70.903°W; summit elev. 5,672 m

Based on pilot reports, the Buenos Aires VAAC reported continuous emissions from Ubinas on 25, 27-28, and 30-31 October. The plumes rose to 5.5-8.5 km (18,000-28,000 ft) a.s.l. and drifted N, NW, SW, and W.

Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions.

Source: Buenos Aires Volcanic Ash Advisory Center http://www.bom.gov.au/products/Volc_ash_recent.shtml

Ubinas Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-02

**+++++++++++++++++++++++++++++++++++++**

**Sally Kuhn Sennert**

**Global Volcanism Program**

Smithsonian Institution

National Museum of Natural History MRC-119

Department of Mineral Sciences

Washington, D.C., 20560

http://www.volcano.si.edu/reports/usgs/index.cfm

Phone: 202.633.1805
Fax: 202.357.2476
<http://www.volcano.si.edu/reports/usgs/>++++++++++++++++++++++++++++++++++++++++++

==============================================================
To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx

To contribute to the volcano list, send your message to:
volcano@xxxxxxxx  Please do not send attachments.
==============================================================

[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux